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Motivation: Breast Cancer Imaging

Most common cause of cancer death
in women worldwide.
e 25% of all cancer cases in women

e 15% of all cancer deaths in women

Despite advances in early detection and diagnosis:

Urgent need for novel imaging techniques providing higher
specificity, contrast and image resolution than X-ray
mammography at lower costs than MRI.
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Quantitative Photoacoustic Breast Imaging

e hybrid imaging: "light in, sound out”
e non-ionizing, near-infrared radiation
e quantitative images of optical properties

e novel diagnostic information

PHOTOACOUSTIC IMAGING

photoacoustic excitation photoacoustic detection
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Photoacoustic Imaging: Spectral Properties
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e different wavelengths allow quantitative spectroscopic examinations.

e gap between oxygenated and deoxygenated blood.



Quantitative Ultrasonic Breast Imaging

e "sound in, sound out”

different from conventional US but as safe

quantitative images of acoustic properties

novel diagnostic information

LASER-INDUCED ULTRASOUND IMAGING

laser-induced ultrasound ultrasound detection
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Speed of Sound vs MRI Images
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[4 Duric, Littrup, 2017. Breast Ultrasound Tomography, IntechOpen.
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Photoacoustic and Ultrasonic Mammography Scanner

US Transducers Rotatable Imaging Bowl
Light Torches

Power supply & , i
Cooling for Laser

OPO Laser Data Acquisition & Water Treatment &
Control System Temperature Control

Aim: novel diagnostic information from high resolution maps of
optical and acoustic properties

e 512 US transducers on rotatable half-sphere

e 40 optical fibers for photoacoustic excitation

e fully 3D, isotropic resolution < 0.5mm

I optimized for photoacoustic imaging



The PAMMOTH Team
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Our Contributions

simulation studies for

e ultrasonic transducer specification
e light excitation design
e sensing pattern design

e measurement protocol design
reconstruction algorithm design:

e accuracy vs. computational time/resources/complexity
e scanner modelling

e assist high performance computing implementation

assist phantom & calibration design

process data, refine measurement procedures
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Ultrasound Tomography Reconstruction Approaches

(c(x)720? — A)pi(x, t) = si(x, t), fi = Mip; i=1,..., Neec

Travel time tomography: geometrical optics approximation.
v robust & computationally efficient

I valid for high frequencies (attenuation!), low res, lots of data

@ Javaherian, L, Cox, 2020. Refraction-corrected ray-based inversion for

three-dimensional ultrasound tomography of the breast, Inverse Problems.
Full waveform inversion (FWI): fit full wave model to all data.
v~ high res from little data, transducer modelling, constraints
I many wave simulations, complex numerical optimization

o low TRL but already used in 2D systems

@ Pérez-Liva, Herraiz, Udias, Miller, Cox, Treeby 2017. Time domain
reconstruction of sound speed and attenuation in ultrasound computed

tomography using full wave inversion, JASA.



FWI Illustration in 2D

SOS ground truth c*™e

e 1mm resolution
2222 voxel
e 836 voxels on surface (pink)

e TTT would need 8362
source-receiver combos for high res

result

color range 1450 - 1670 m/s
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FWI Illustration in 2D: 32 Sensors, 32 Receivers

SOS reconstruction ¢"* reconstruction error ct“¢ — crec

color range 1450 - 1670 m/s color range -50 - 50 m/s
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3D Time Domain FWI for Breast UST
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Challenges and solutions for 3D:

I 2 x ng, wave simulations per gradient

I computationally & stochastically efficient gradient estimator
I memory requirements of gradient computation

I slow convergence and local minima

I computational resources
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— stochastic quasi-newton optimization (SL-BFGS)
I computationally & stochastically efficient gradient estimator
I memory requirements of gradient computation

I slow convergence and local minima

I computational resources
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3D Time Domain FWI for Breast UST

"src
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Challenges and solutions for 3D:

I 2 x ng, wave simulations per gradient
— stochastic quasi-newton optimization (SL-BFGS)

I computationally & stochastically efficient gradient estimator
— source encoding for time-invariant systems

I memory requirements of gradient computation
— time-reversal based gradient computation

I slow convergence and local minima
— coarse-to-fine multigrid schemes

I computational resources
— runs on single GPU, can utilize multiple GPUs



3D FWI: Setup

e
- : ‘

e 3D breast phantom at 0.5mm resolution, 1024 sources and receivers
e 442 x 442 x 222 voxel, 3912 time steps

e color range 1435-1665 m/s

@ Yang Lou et al. Generation of anatomically realistic numerical phantoms
for photoacoustic and ultrasonic breast imaging, JBO, 2017.


https://anastasio.wustl.edu/downloadable-contents/oa-breast/

Starting point in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s
e single grid
e SGD

e normal single source gradient estimator



3D FWI in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

e multi-grid with 3 level, coarsening factor 2
e SL-BFGS, slowness transform, prog. iter averaging

e time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 4 GPU

color range 1435 to 1665 m/s

color range -50 to +50 m/s
e multi-grid with 3 level, coarsening factor 2

e SL-BFGS, slowness transform, prog. iter averaging

e time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 16 GPU

color range 1435 to 1665 m/s

i

color range -50 to +50 m/s

e multi-grid with 3 level, coarsening factor 2
e SL-BFGS, slowness transform, prog. iter averaging

e time-reversal based source encoding gradient estimator



FWI for Experimental Data: Where Are We?

v data from phantom objects, volunteers & patients
v ray-based SOS reconstructions

v/ photoacoustic reconstructions — data pre-processing, scanner &
transducer modelling, wave simulations

v modeling of US protocol, data read-in & pre-processing
I model calibration

I FWI of phantom objects, quantitative evaluation

I FWI of volunteer data

' clinical evaluation
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Summary & Outlook

e need for novel breast imaging techniques

e photoacoustic (PAT) and ultrasound tomography (UST) give access
to high-quality images of optical and acoustic tissue properties

e combined PAT+UST scanner designed & build
e evaluation on data from phantoms, volunteers & patients
e proof-of-concept studies of TD-FWI for high resolution 3D UST

e realization of FWI for experimental data on the way
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Thank you for your attention! ]

@ L, Pérez-Liva, Treeby, Cox, 2021. High Resolution 3D Ultrasonic Breast

Imaging by Time-Domain Full Waveform Inversion, Inverse Problems

38(2).
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Challenges of High-Resolution FWI in 3D

Nsrc

rcnelg ZD (fi(c), f,-‘s) s.t. fi(c) = M;A7Y(c)s;

vep(i(e).1%) =2 T o (azg(txz’ ?)ate

0

PAMMOTH scanner example:

e 0.5mm res: comp grid 560 x 560 x 300 voxel = 94M, ROl = 7M
e 1024 transducers, 4000 time samples (multiple sources);

Gradient computation:

e 1 wave sim: ~30 min.

I 2 wave sim per source, ng,. = 1024 — 20 days per gradient.
stochastic gradient methods — 60 min per gradient

! storage of forward field in ROIl: ~ 200GB.
time-reversal based gradient computation — 5 — 25GB.
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Stochastic Gradient Optimization

Nsrc Nsrc

:_ src ZD C) _nscmD MA snf;'é)

approx V.J by [S|71 30,5 VDj(c), S C {1,...,nsc} predetermined.
— incremental gradient, ordered sub-set methods

Instance of finite sum minimization similar to training in machine
learning. Use stochastic gradient descent (SGD):

e momentum, gradient/iterate averaging (SAV, SAGA), variance
reduction (SVRG), choice of step size, mini-batch size

e include non-smooth regularizers (SPDHG, SADMM)

e quasi-Newton-type methods, e.g., stochastic L-BFGS

@ Bottou, Curtis, Nocedal. Optimization Methods for Large-Scale Machine
Learning, arXiv:1606.04838.

@ Fabien-Ouellet, Gloaguen, Giroux, 2017. A stochastic L-BFGS approach

for full-waveform inversion, SEG.



Stochastic Gradient Optimization
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Gradient Estimates: Sub-Sampling vs Source Encoding

Computationally & stochastically efficient gradient estimator?

Source Encoding for linear PDE constraints:

Nsrt Nsrt

Let §:= Z wis;, f0 .= Z W,'f;-(s, with  E[w] =0, Cov[w] =1,

then E [v HMA‘l(c)§ - f5H2] = vi IMA=Y(c)si — 7|5

e related to covariance trace estimators
e Rademacher distribution (w; = 1 with equal prob)
e add time-shifting for time-invariant PDEs — variance control

e can be turned into scanning strategy

@ Haber, Chung, Herrmann, 2012. An effective method for parameter
estimation with PDE constraints with multiple right-hand sides, SIAM J.
Optim.



Stochastic Gradient Estimates
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Delayed Source Encoding
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Time-Reversal Gradient Computations

Avoid storage of forward fields!

(c(x)720 = D)p(x, t) = s(x,t),  inRY x [0, T]
LS| ?p(x,t)\ .
VD = 2/0 =OE (81‘2 ) q*(x,t)

Idea: ROI Q, supp(s) € Q° x [0, T]. As p(x,0) = p(x, T) = 9¢p(x,0) =
Otp(x, T) =0in Q, p(x, t) can be reconstructed from p(x, t) on
0 x [0, T] by time-reversal (TR).

e store fwd fields on ROI boundary during forward wave simulation

e interleave backward (adjoint) simulation with TR of boundary data
e 3 instead of 2 wave simulations (unless 2 GPUs used).

e code up efficiently

e multi-layer boundary increases accuarcy for pseudospectral method
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Multigrid Schemes

e casy due to regular grids in space '

and time
e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 6: upsampled from 5.66mm.



Multigrid Schemes

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 5: upsampled from 4mm.



Multigrid Schemes

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 4: upsampled from 2.83mm.



Multigrid Schemes

—

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 3: upsampled from 2mm.



Multigrid Schemes

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 2: upsampled from 1.41mm.



Multigrid Schemes

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 1: resolution 1Imm



Multigrid Schemes

e easy due to regular grids in space and time
e coarsening by 2: speed up of 16 (in principle)

e most basic multi-grid usage for now: initialization
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Utilizing Multiple GPUs

e average independent gradient estimates to reduce variance

e not be the best way to use multiple GPUs

rel £y error in percent

12r——1GPU
——2 GPU

4 GPU
——8 GPU # gradient evaluations

0 4 8 12 16 20 24 28 32
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