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Motivation: Breast Cancer Imaging

Most common cause of cancer death

in women worldwide.

• 25% of all cancer cases in women

• 15% of all cancer deaths in women

Despite advances in early detection and diagnosis:

Urgent need for novel imaging techniques providing higher

specificity, contrast and image resolution than X-ray

mammography at lower costs than MRI.
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Quantitative Photoacoustic Breast Imaging

• hybrid imaging: ”light in, sound out”

• non-ionizing, near-infrared radiation

• quantitative images of optical properties

• novel diagnostic information



Photoacoustic Imaging: Spectral Properties

• different wavelengths allow quantitative spectroscopic examinations.

• gap between oxygenated and deoxygenated blood.



Quantitative Ultrasonic Breast Imaging

• ”sound in, sound out”

• different from conventional US but as safe

• quantitative images of acoustic properties

• novel diagnostic information



Speed of Sound vs MRI Images

Taken from:

Duric, Littrup, 2017. Breast Ultrasound Tomography, IntechOpen.
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Photoacoustic and Ultrasonic Mammography Scanner

Aim: novel diagnostic information from high resolution maps of

optical and acoustic properties

• 512 US transducers on rotatable half-sphere

• 40 optical fibers for photoacoustic excitation

• fully 3D, isotropic resolution ≤ 0.5mm

! optimized for photoacoustic imaging



The PAMMOTH Team



Our Contributions

simulation studies for

• ultrasonic transducer specification

• light excitation design

• sensing pattern design

• measurement protocol design

reconstruction algorithm design:

• accuracy vs. computational time/resources/complexity

• scanner modelling

• assist high performance computing implementation

assist phantom & calibration design

process data, refine measurement procedures
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Ultrasound Tomography Reconstruction Approaches

(c(x)−2∂2
t −∆)pi (x , t) = si (x , t), fi = Mipi i = 1, . . . , nsrc

Travel time tomography: geometrical optics approximation.

X robust & computationally efficient

! valid for high frequencies (attenuation!), low res, lots of data

Javaherian, L, Cox, 2020. Refraction-corrected ray-based inversion for

three-dimensional ultrasound tomography of the breast, Inverse Problems.

Full waveform inversion (FWI): fit full wave model to all data.

X high res from little data, transducer modelling, constraints

! many wave simulations, complex numerical optimization

• low TRL but already used in 2D systems

Pérez-Liva, Herraiz, Ud́ıas, Miller, Cox, Treeby 2017. Time domain

reconstruction of sound speed and attenuation in ultrasound computed

tomography using full wave inversion, JASA.



FWI Illustration in 2D

SOS ground truth c true

color range 1450 - 1670 m/s

• 1mm resolution

• 2222 voxel

• 836 voxels on surface (pink)

• TTT would need 8362

source-receiver combos for high res

result
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FWI Illustration in 2D: 32 Sensors, 32 Receivers

SOS reconstruction c rec

color range 1450 - 1670 m/s

reconstruction error c true − c rec

color range -50 - 50 m/s
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3D Time Domain FWI for Breast UST

min
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i

D
(
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−1(c)si , f
δ
i

)
∇cD

(
f (c), f δ

)
= 2
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c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t)

Challenges and solutions for 3D:

! 2 x nsrc wave simulations per gradient

−→ stochastic quasi-newton optimization (SL-BFGS)

! computationally & stochastically efficient gradient estimator

−→ source encoding for time-invariant systems

! memory requirements of gradient computation

−→ time-reversal based gradient computation

! slow convergence and local minima

−→ coarse-to-fine multigrid schemes

! computational resources

−→ runs on single GPU, can utilize multiple GPUs
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3D FWI: Setup

• color range 1435-1665 m/s

• 3D breast phantom at 0.5mm resolution, 1024 sources and receivers

• 442× 442× 222 voxel, 3912 time steps

Yang Lou et al. Generation of anatomically realistic numerical phantoms

for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/

https://anastasio.wustl.edu/downloadable-contents/oa-breast/


Starting point in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• single grid

• SGD

• normal single source gradient estimator



3D FWI in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 4 GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 16 GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



FWI for Experimental Data: Where Are We?

X data from phantom objects, volunteers & patients

X ray-based SOS reconstructions

X photoacoustic reconstructions → data pre-processing, scanner &

transducer modelling, wave simulations

X modeling of US protocol, data read-in & pre-processing

! model calibration

! FWI of phantom objects, quantitative evaluation

! FWI of volunteer data

! clinical evaluation
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Summary & Outlook

• need for novel breast imaging techniques

• photoacoustic (PAT) and ultrasound tomography (UST) give access

to high-quality images of optical and acoustic tissue properties

• combined PAT+UST scanner designed & build

• evaluation on data from phantoms, volunteers & patients

• proof-of-concept studies of TD-FWI for high resolution 3D UST

• realization of FWI for experimental data on the way

Felix.Lucka@cwi.nl Ultrasonic Breast Tomography via 3D FWI 16 June 2022



Thank you for your attention!

L, Pérez-Liva, Treeby, Cox, 2021. High Resolution 3D Ultrasonic Breast

Imaging by Time-Domain Full Waveform Inversion, Inverse Problems

38(2).
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Challenges of High-Resolution FWI in 3D

min
c∈C

nsrc∑
i

D
(
fi (c), f δi

)
s.t. fi (c) = MiA

−1(c)si

∇cD
(
f (c), f δ

)
= 2

∫ T

0

1

c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t)

PAMMOTH scanner example:

• 0.5mm res: comp grid 560× 560× 300 voxel = 94M, ROI = 7M

• 1024 transducers, 4000 time samples (multiple sources);

Gradient computation:

• 1 wave sim: ∼30 min.

! 2 wave sim per source, nsrc = 1024 → 20 days per gradient.

stochastic gradient methods → 60 min per gradient

! storage of forward field in ROI: ∼ 200GB.

time-reversal based gradient computation → 5− 25GB.
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Stochastic Gradient Optimization

J := n−1src

nsrc∑
i

Di (c) := n−1src

nsrc∑
i

D
(
MiA

−1(c)si , f
δ
i

)
approx ∇J by |S|−1

∑
j∈S ∇Dj(c), S ⊂ {1, . . . , nsrc} predetermined.

→ incremental gradient, ordered sub-set methods

Instance of finite sum minimization similar to training in machine

learning. Use stochastic gradient descent (SGD):

• momentum, gradient/iterate averaging (SAV, SAGA), variance

reduction (SVRG), choice of step size, mini-batch size

• include non-smooth regularizers (SPDHG, SADMM)

• quasi-Newton-type methods, e.g., stochastic L-BFGS

Bottou, Curtis, Nocedal. Optimization Methods for Large-Scale Machine

Learning, arXiv:1606.04838.

Fabien-Ouellet, Gloaguen, Giroux, 2017. A stochastic L-BFGS approach

for full-waveform inversion, SEG.



Stochastic Gradient Optimization

100 101 102
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Gradient Estimates: Sub-Sampling vs Source Encoding

Computationally & stochastically efficient gradient estimator?

Source Encoding for linear PDE constraints:

Let ŝ :=

nsrt∑
i

wi si , f̂ δ :=
nsrt∑
i

wi f
δ
i , with E [w ] = 0, Cov[w ] = I ,

then E
[
∇
∥∥∥MA−1(c)ŝ − f̂ δ

∥∥∥2
2

]
= ∇

nsrc∑
i

∥∥MA−1(c)si − f δi
∥∥2
2

• related to covariance trace estimators

• Rademacher distribution (wi = ±1 with equal prob)

• add time-shifting for time-invariant PDEs → variance control

• can be turned into scanning strategy

Haber, Chung, Herrmann, 2012. An effective method for parameter

estimation with PDE constraints with multiple right-hand sides, SIAM J.

Optim.



Stochastic Gradient Estimates
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Delayed Source Encoding

0 10 20 30 40 50 60 70

1

1.2

1.4

1.6

1.8

2

2.2

0 10 20 30 40 50 60 70
0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

Felix.Lucka@cwi.nl Ultrasonic Breast Tomography via 3D FWI 16 June 2022



Time-Reversal Gradient Computations

Avoid storage of forward fields!

(c(x)−2∂2
t −∆)p(x , t) = s(x , t), in Rd × [0,T ]

∇cD = 2

∫ T

0

1

c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t)

Idea: ROI Ω, supp(s) ∈ Ωc × [0,T ]. As p(x , 0) = p(x ,T ) = ∂tp(x , 0) =

∂tp(x ,T ) = 0 in Ω, p(x , t) can be reconstructed from p(x , t) on

∂Ω× [0,T ] by time-reversal (TR).

• store fwd fields on ROI boundary during forward wave simulation

• interleave backward (adjoint) simulation with TR of boundary data

• 3 instead of 2 wave simulations (unless 2 GPUs used).

• code up efficiently

• multi-layer boundary increases accuarcy for pseudospectral method
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Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 6: upsampled from 5.66mm.



Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 5: upsampled from 4mm.



Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 4: upsampled from 2.83mm.



Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 3: upsampled from 2mm.



Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 2: upsampled from 1.41mm.



Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 1: resolution 1mm



Multigrid Schemes

• easy due to regular grids in space and time

• coarsening by 2: speed up of 16 (in principle)

• most basic multi-grid usage for now: initialization
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Utilizing Multiple GPUs

• average independent gradient estimates to reduce variance

• not be the best way to use multiple GPUs
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