

Ultrasonic Breast Tomography via 3D Full Waveform Inversion

Felix Lucka (he/him/his) & the PAMMOTH team

Department of Imaging Physics, TU Delft 16 June 2022

Most common cause of cancer death in women worldwide.

- 25% of all cancer cases in women
- 15% of all cancer deaths in women

Despite advances in early detection and diagnosis:

Urgent need for novel imaging techniques providing higher specificity, contrast and image resolution than X-ray mammography at lower costs than MRI.

Quantitative Photoacoustic Breast Imaging

- hybrid imaging: "light in, sound out"
- non-ionizing, near-infrared radiation
- quantitative images of optical properties
- novel diagnostic information

- different wavelengths allow quantitative spectroscopic examinations.
- gap between oxygenated and deoxygenated blood.

Quantitative Ultrasonic Breast Imaging

- "sound in, sound out"
- different from conventional US but as safe
- quantitative images of acoustic properties
- novel diagnostic information

Speed of Sound vs MRI Images

Taken from:

Duric, Littrup, 2017. Breast Ultrasound Tomography, IntechOpen.

Felix.Lucka@cwi.nl

Ultrasonic Breast Tomography via 3D FWI

16 June 2022

Photoacoustic and Ultrasonic Mammography Scanner

Aim: novel diagnostic information from high resolution maps of optical and acoustic properties

- 512 US transducers on rotatable half-sphere
- 40 optical fibers for photoacoustic excitation
- fully 3D, isotropic resolution \leq 0.5mm
- ! optimized for photoacoustic imaging

The PAMMOTH Team

Our Contributions

simulation studies for

- ultrasonic transducer specification
- light excitation design
- sensing pattern design
- measurement protocol design

reconstruction algorithm design:

- accuracy vs. computational time/resources/complexity
- scanner modelling
- assist high performance computing implementation

assist phantom & calibration design

process data, refine measurement procedures

Ultrasound Tomography Reconstruction Approaches

$$(c(x)^{-2}\partial_t^2 - \Delta)p_i(x,t) = s_i(x,t), \qquad f_i = M_i p_i \qquad i = 1, \dots, n_{src}$$

Travel time tomography: geometrical optics approximation.

✓ robust & computationally efficient

! valid for high frequencies (attenuation!), low res, lots of data

Javaherian, L, Cox, 2020. Refraction-corrected ray-based inversion for three-dimensional ultrasound tomography of the breast, *Inverse Problems*.

Full waveform inversion (FWI): fit full wave model to all data.

- \checkmark high res from little data, transducer modelling, constraints
 - ! many wave simulations, complex numerical optimization
 - low TRL but already used in 2D systems
 - Pérez-Liva, Herraiz, Udías, Miller, Cox, Treeby 2017. Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion, JASA.

FWI Illustration in 2D

SOS ground truth c^{true}

- 1mm resolution
- 222² voxel
- 836 voxels on surface (pink)
- TTT would need 836² source-receiver combos for high res result

color range 1450 - 1670 m/s

FWI Illustration in 2D: 32 Sensors, 32 Receivers

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}A^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

- ! $2 \times n_{src}$ wave simulations per gradient
- ! computationally & stochastically efficient gradient estimator
- ! memory requirements of gradient computation
- ! slow convergence and local minima
- ! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}A^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

- ! $2 \times n_{src}$ wave simulations per gradient
 - \rightarrow stochastic quasi-newton optimization (SL-BFGS)
- ! computationally & stochastically efficient gradient estimator
- ! memory requirements of gradient computation
- ! slow convergence and local minima
- ! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}A^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

! $2 \times n_{src}$ wave simulations per gradient

 \rightarrow stochastic quasi-newton optimization (SL-BFGS)

- ! computationally & stochastically efficient gradient estimator
 - \longrightarrow source encoding for time-invariant systems
- ! memory requirements of gradient computation
- ! slow convergence and local minima
- ! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}A^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

! $2 \times n_{src}$ wave simulations per gradient

 \rightarrow stochastic quasi-newton optimization (SL-BFGS)

- ! computationally & stochastically efficient gradient estimator
 - \longrightarrow source encoding for time-invariant systems
- ! memory requirements of gradient computation
 - \longrightarrow time-reversal based gradient computation
- ! slow convergence and local minima

! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}A^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

! $2 \times n_{src}$ wave simulations per gradient

 \rightarrow stochastic quasi-newton optimization (SL-BFGS)

- ! computationally & stochastically efficient gradient estimator
 - \longrightarrow source encoding for time-invariant systems
- ! memory requirements of gradient computation
 - \longrightarrow time-reversal based gradient computation
- ! slow convergence and local minima
 - \longrightarrow coarse-to-fine multigrid schemes
- ! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}A^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}} \left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right) q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

! $2 \times n_{src}$ wave simulations per gradient

 \rightarrow stochastic quasi-newton optimization (SL-BFGS)

! computationally & stochastically efficient gradient estimator

 \longrightarrow source encoding for time-invariant systems

- ! memory requirements of gradient computation
 - \longrightarrow time-reversal based gradient computation
- ! slow convergence and local minima

 \longrightarrow coarse-to-fine multigrid schemes

- ! computational resources
 - \longrightarrow runs on single GPU, can utilize multiple GPUs

3D FWI: Setup

- color range 1435-1665 m/s
- 3D breast phantom at 0.5mm resolution, 1024 sources and receivers
- $442 \times 442 \times 222$ voxel, 3912 time steps

Starting point in 24h on desktop with single GPU

color range 1435 to 1665 m/s

- single grid
- SGD
- normal single source gradient estimator

color range -50 to +50 m/s

3D FWI in 24h on desktop with single GPU

color range 1435 to 1665 m/s

color range -50 to +50 m/s

- multi-grid with 3 level, coarsening factor 2
- SL-BFGS, slowness transform, prog. iter averaging
- time-reversal based source encoding gradient estimator

3D FWI in 24h on cluster with 4 GPU

color range 1435 to 1665 m/s

color range -50 to +50 m/s

- multi-grid with 3 level, coarsening factor 2
- SL-BFGS, slowness transform, prog. iter averaging
- time-reversal based source encoding gradient estimator

3D FWI in 24h on cluster with 16 GPU

color range 1435 to 1665 m/s

color range -50 to +50 m/s

- multi-grid with 3 level, coarsening factor 2
- SL-BFGS, slowness transform, prog. iter averaging
- time-reversal based source encoding gradient estimator

FWI for Experimental Data: Where Are We?

- $\checkmark\,$ data from phantom objects, volunteers & patients
- ✓ ray-based SOS reconstructions
- $\checkmark\,$ photoacoustic reconstructions \rightarrow data pre-processing, scanner & transducer modelling, wave simulations
- $\checkmark\,$ modeling of US protocol, data read-in & pre-processing
 - ! model calibration
 - ! FWI of phantom objects, quantitative evaluation
 - ! FWI of volunteer data
 - ! clinical evaluation

- need for novel breast imaging techniques
- photoacoustic (PAT) and ultrasound tomography (UST) give access to high-quality images of optical and acoustic tissue properties
- combined PAT+UST scanner designed & build
- evaluation on data from phantoms, volunteers & patients
- proof-of-concept studies of TD-FWI for high resolution 3D UST
- realization of FWI for experimental data on the way

≜UCL

Thank you for your attention!

L, Pérez-Liva, Treeby, Cox, 2021. High Resolution 3D Ultrasonic Breast Imaging by Time-Domain Full Waveform Inversion, *Inverse Problems* 38(2).

Ultrasonic Breast Tomography via 3D FWI

Challenges of High-Resolution FWI in 3D

$$\min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(f_{i}(c), f_{i}^{\delta}\right) \quad s.t. \quad f_{i}(c) = M_{i}A^{-1}(c)s_{i}$$
$$\nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) = 2\int_{0}^{T} \frac{1}{c(x)^{3}} \left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right) q^{*}(x, t)$$

PAMMOTH scanner example:

- + 0.5mm res: comp grid 560 \times 560 \times 300 voxel = 94M, ROI = 7M
- 1024 transducers, 4000 time samples (multiple sources);

Gradient computation:

- 1 wave sim: \sim 30 min.
- **! 2** wave sim per source, $n_{src} = 1024 \rightarrow 20$ days per gradient. stochastic gradient methods $\rightarrow 60$ min per gradient
- ! storage of forward field in ROI: \sim 200GB.

time-reversal based gradient computation \rightarrow 5 – 25GB.

Stochastic Gradient Optimization

$$\mathcal{J} := n_{src}^{-1} \sum_{i}^{n_{src}} \mathcal{D}_i(c) := n_{src}^{-1} \sum_{i}^{n_{src}} \mathcal{D}\left(M_i A^{-1}(c) s_i, f_i^{\delta}\right)$$

approx $\nabla \mathcal{J}$ by $|\mathcal{S}|^{-1} \sum_{j \in \mathcal{S}} \nabla \mathcal{D}_j(c)$, $\mathcal{S} \subset \{1, \dots, n_{src}\}$ predetermined. \rightarrow incremental gradient, ordered sub-set methods

Instance of finite sum minimization similar to training in machine learning. Use stochastic gradient descent (SGD):

- momentum, gradient/iterate averaging (SAV, SAGA), variance reduction (SVRG), choice of step size, mini-batch size
- include non-smooth regularizers (SPDHG, SADMM)
- quasi-Newton-type methods, e.g., stochastic L-BFGS

Bottou, Curtis, Nocedal. Optimization Methods for Large-Scale Machine Learning, arXiv:1606.04838.

Fabien-Ouellet, Gloaguen, Giroux, 2017. A stochastic L-BFGS approach for full-waveform inversion, *SEG*.

Stochastic Gradient Optimization

Felix.Lucka@cwi.nl

Gradient Estimates: Sub-Sampling vs Source Encoding

Computationally & stochastically efficient gradient estimator?

Source Encoding for linear PDE constraints:

Let
$$\hat{s} := \sum_{i}^{n_{srt}} w_i s_i$$
, $\hat{f}^{\delta} := \sum_{i}^{n_{srt}} w_i f_i^{\delta}$, with $\mathbb{E}[w] = 0$, $\mathbb{C}ov[w] = I$,
then $\mathbb{E}\left[\nabla \left\| MA^{-1}(c)\hat{s} - \hat{f}^{\delta} \right\|_2^2\right] = \nabla \sum_{i}^{n_{src}} \left\| MA^{-1}(c)s_i - f_i^{\delta} \right\|_2^2$

- related to covariance trace estimators
- Rademacher distribution ($w_i = \pm 1$ with equal prob)
- add time-shifting for time-invariant PDEs \rightarrow variance control
- can be turned into scanning strategy
- Haber, Chung, Herrmann, 2012. An effective method for parameter estimation with PDE constraints with multiple right-hand sides, SIAM J. Optim.

Stochastic Gradient Estimates

Felix.Lucka@cwi.nl

Delayed Source Encoding

Avoid storage of forward fields!

$$(c(x)^{-2}\partial_t^2 - \Delta)p(x, t) = s(x, t), \quad \text{in } \mathbb{R}^d \times [0, T]$$
$$\nabla_c \mathcal{D} = 2 \int_0^T \frac{1}{c(x)^3} \left(\frac{\partial^2 p(x, t)}{\partial t^2}\right) q^*(x, t)$$

Idea: ROI Ω , supp $(s) \in \Omega^c \times [0, T]$. As $p(x, 0) = p(x, T) = \partial_t p(x, 0) = \partial_t p(x, T) = 0$ in Ω , p(x, t) can be reconstructed from p(x, t) on $\partial\Omega \times [0, T]$ by **time-reversal (TR)**.

- store fwd fields on ROI boundary during forward wave simulation
- $\bullet\,$ interleave backward (adjoint) simulation with TR of boundary data
- 3 instead of 2 wave simulations (unless 2 GPUs used).
- code up efficiently
- multi-layer boundary increases accuarcy for pseudospectral method

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 6: upsampled from 5.66mm.

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 5: upsampled from 4mm.

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 4: upsampled from 2.83mm.

Multigrid Schemes

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 3: upsampled from 2mm.

Multigrid Schemes

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 2: upsampled from 1.41mm.

- easy due to regular grids in space and time
- coarsening by 2: (in principle) speed up of 16
- most basic multi-grid usage for now: initialization

level 1: resolution 1mm

Multigrid Schemes

- easy due to regular grids in space and time
- coarsening by 2: speed up of 16 (in principle)
- most basic multi-grid usage for now: initialization

Utilizing Multiple GPUs

- average independent gradient estimates to reduce variance
- not be the best way to use multiple GPUs

