

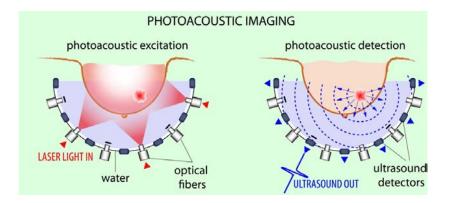
Imaging the Acoustic and Optical Properties of the Breast with USCT and PAT

Felix Lucka

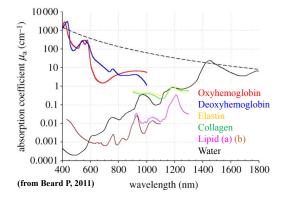
SIAM Imaging Science 8th July 2020

Quantitative Photoacoustic Breast Imaging

- hybrid imaging: "light in, sound out"
- non-ionizing, near-infrared radiation
- quantitative images of optical properties
- novel diagnostic information



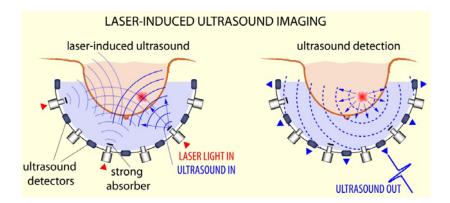
Photoacoustic Imaging: Spectral Properties



- different wavelengths allow quantitative spectroscopic examinations.
- gap between oxygenated and deoxygenated blood.

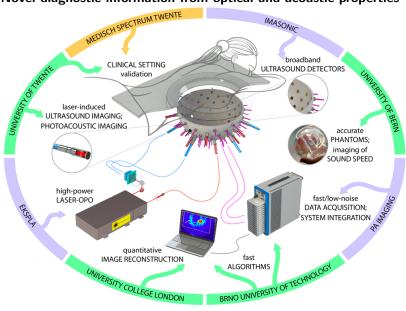
Quantitative Ultrasonic Breast Imaging

- "sound in, sound out"
- different from conventional US but as safe
- quantitative images of acoustic properties
- novel diagnostic information



H2020 Project: Novel PAT+USCT Mammography Scanner

Novel diagnostic information from optical and acoustic properties



Our Contributions

- simulation studies for
 - ultrasonic transducer specification
 - light excitation design
 - sensing pattern design
 - measurement protocol design
- reconstruction algorithm design:
 - accuracy vs. computational time/resources/complexity
 - scanner modelling
 - assist high performance computing implementation
- assist phantom design
- assist calibration measurement design
- process data, refine measurement procedures

Mathematical Modelling (simplified)

Quantitative Photoacoustic Tomography (QPAT)

radiative transfer equation (RTE) + acoustic wave equation

$$(v \cdot \nabla + \mu_{a}(x) + \mu_{s}(x)) \phi(x, v) = q(x, v) + \mu_{s}(x) \int \Theta(v, v') \phi(x, v') dv',$$

$$p^{PA}(x, t = 0) = p_{0} := \Gamma(x)\mu_{a}(x) \int \phi(x, v) dv, \qquad \partial_{t} p^{PA}(x, t = 0) = 0$$

$$(c(x)^{-2}\partial_{t}^{2} - \Delta)p^{PA}(x, t) = 0, \qquad f^{PA} = Mp^{PA}$$

Ultrasound Computed Tomography (USCT)

$$(c(x)^{-2}\partial_t^2 - \Delta)p_i^{US}(x,t) = s_i(x,t), \qquad f_i^{US} = M_i p_i^{US} \qquad i = 1, \dots, n_{src}$$

Step-by-step inversion

- 1. $f^{US} \rightarrow c$: acoustic parameter identification from boundary data.
- 2. $f^{PA} \rightarrow p_0$: acoustic initial value problem with boundary data.
- 3. $p_0 \rightarrow \mu_a$: optical parameter identification from internal data.

$$(c(x)^{-2}\partial_t^2 - \Delta)p_i^{US}(x, t) = s_i(x, t), \qquad f_i^{US} = M_i p_i^{US} \qquad i = 1, \dots, n_{src}$$

Travel time tomography: geometrical optics approximation.

 \checkmark robust & computationally efficient

! valid for high frequencies (attenuation!), low res, lots of data

Reverse time migration: forward wavefield correlated in time with backward wavefield (adjoint wave equation) via imaging condition

- $\checkmark~$ 2 wave simulations, better quality
 - ! approximation, needs initial guess, quantitative errors

Full waveform inversion (FWI): fit full model to all data.

- $\checkmark\,$ high res from little data, transducer modelling, constraints
 - ! many wave simulations, complex numerical optimization
 - low TRL but already used in 2D systems

Time Domain Full Waveform Inversion

$$F(c)p_i := (c^{-2}\partial_t^2 - \Delta)p_i = s_i, \qquad f_i = M_i p_i, \quad i = 1, \dots, n_{src}$$
$$\min_{c \in \mathcal{C}} \sum_{i}^{n_{src}} \mathcal{D}\left(f_i(c), f_i^{\delta}\right) \quad s.t. \quad f_i(c) = M_i F^{-1}(c)s_i$$

gradient for first-order optimization via adjoint state method:

$$\nabla_{c} \mathcal{D}\left(f(c), f^{\delta}\right) = 2 \int_{0}^{T} \frac{1}{c(x)^{3}} \left(\frac{\partial^{2} p(x, t)}{\partial t^{2}}\right) q^{*}(x, t) \quad ,$$

where $(c^{-2}\partial_t^2 - \Delta)q^* = s^*$, $s^*(x,t)$ is time-reversed data discrepancy

ightarrow two wave simulations for one gradient

Starting point in 2D:

Pérez-Liva, Herraiz, Udías, Miller, Cox, Treeby 2017. Time domain reconstruction of sound speed and attenuation in ultrasound computed tomography using full wave inversion, *JASA*.

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}F^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

- ! $2 \times n_{src}$ wave simulations per gradient
- ! computationally & stochastically efficient gradient estimator
- ! memory requirements of gradient computation
- ! slow convergence and local minima
- ! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}F^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

- ! $2 \times n_{src}$ wave simulations per gradient
 - \rightarrow stochastic quasi-newton optimization (SL-BFGS)
- ! computationally & stochastically efficient gradient estimator
- ! memory requirements of gradient computation
- ! slow convergence and local minima
- ! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}F^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

! $2 \times n_{src}$ wave simulations per gradient

 \rightarrow stochastic quasi-newton optimization (SL-BFGS)

- ! computationally & stochastically efficient gradient estimator
 - \longrightarrow source encoding for time-invariant systems
- ! memory requirements of gradient computation
- ! slow convergence and local minima
- ! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}F^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

! $2 \times n_{src}$ wave simulations per gradient

 \rightarrow stochastic quasi-newton optimization (SL-BFGS)

- ! computationally & stochastically efficient gradient estimator
 - \longrightarrow source encoding for time-invariant systems
- ! memory requirements of gradient computation
 - \longrightarrow time-reversal based gradient computation
- ! slow convergence and local minima

! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}F^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}}\left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right)q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

! $2 \times n_{src}$ wave simulations per gradient

 \rightarrow stochastic quasi-newton optimization (SL-BFGS)

- ! computationally & stochastically efficient gradient estimator
 - \longrightarrow source encoding for time-invariant systems
- ! memory requirements of gradient computation
 - \longrightarrow time-reversal based gradient computation
- ! slow convergence and local minima
 - \longrightarrow coarse-to-fine multigrid schemes
- ! computational resources

$$\begin{split} \min_{c \in \mathcal{C}} \sum_{i}^{n_{sc}} \mathcal{D}\left(M_{i}F^{-1}(c)s_{i}, f_{i}^{\delta}\right) \\ \nabla_{c}\mathcal{D}\left(f(c), f^{\delta}\right) &= 2\int_{0}^{T} \frac{1}{c(x)^{3}} \left(\frac{\partial^{2}p(x, t)}{\partial t^{2}}\right) q^{*}(x, t) \end{split}$$

Challenges and solutions for 3D:

! $2 \times n_{src}$ wave simulations per gradient

 \rightarrow stochastic quasi-newton optimization (SL-BFGS)

! computationally & stochastically efficient gradient estimator

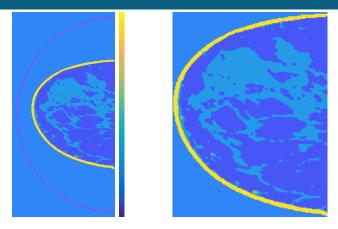
 \longrightarrow source encoding for time-invariant systems

- ! memory requirements of gradient computation
 - \longrightarrow time-reversal based gradient computation
- ! slow convergence and local minima

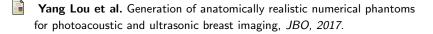
 \longrightarrow coarse-to-fine multigrid schemes

- ! computational resources
 - \longrightarrow runs on single GPU, can utilize multiple GPUs

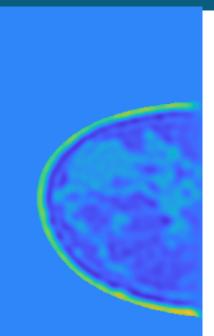
3D FWI: Setup

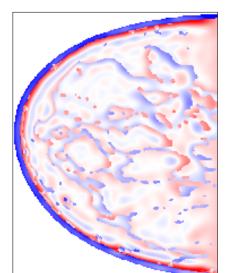


- color range 1435-1665 m/s
- 3D breast phantom at 0.5mm resolution, 1024 sources and receivers
- $442 \times 442 \times 222$ voxel, 3912 time steps

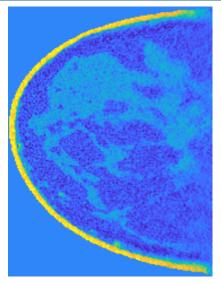


3D FWI: Initialization

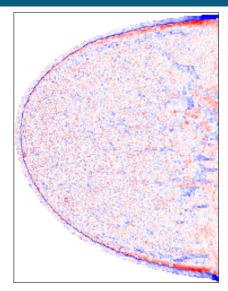




3D FWI: 32 Gradient Evaluations (16h, single GPU)

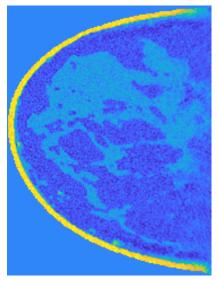


sound speed (color range 1435 to 1665 m/s)

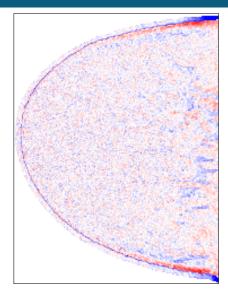


error (color range -100 to +100 m/s)

3D FWI: 64 Gradient Evaluations (32h, single GPU)

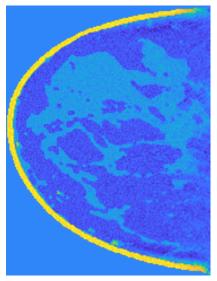


sound speed (color range 1435 to 1665 m/s)

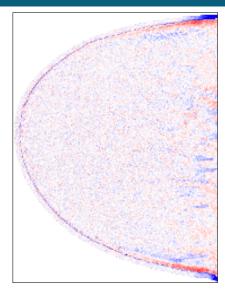


error (color range -100 to +100 m/s)

3D FWI: 128 Gradient Evaluations (64h, single GPU)

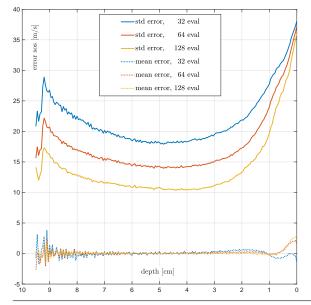


sound speed (color range 1435 to 1665 m/s)



error (color range -100 to +100 m/s)

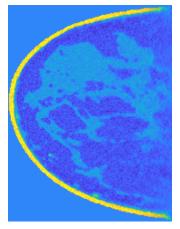
3D FWI: Depth vs Error Distribution

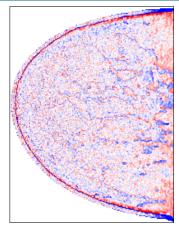


Felix.Lucka@cwi.nl

Breast Imaging with USCT and PAT

3D FWI in 24h on desktop with single GPU



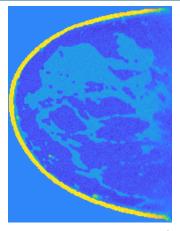


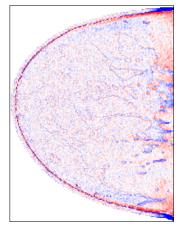
color range 1435 to 1665 m/s

color range -50 to +50 m/s

- multi-grid with 3 level, coarsening factor 2
- SL-BFGS, slowness transform, prog. iter averaging
- time-reversal based source encoding gradient estimator

3D FWI in 24h on cluster with 4 GPU



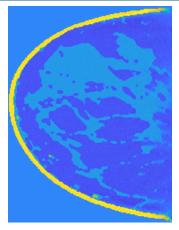


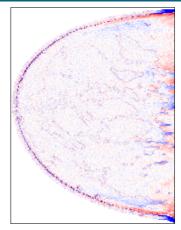
color range 1435 to 1665 m/s

color range -50 to +50 m/s

- multi-grid with 3 level, coarsening factor 2
- SL-BFGS, slowness transform, prog. iter averaging
- time-reversal based source encoding gradient estimator

3D FWI in 24h on cluster with 16 GPU





color range 1435 to 1665 m/s

color range -50 to +50 m/s

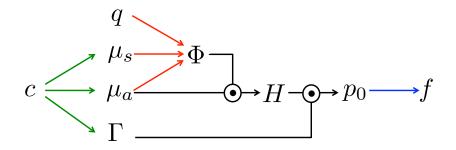
- multi-grid with 3 level, coarsening factor 2
- SL-BFGS, slowness transform, prog. iter averaging
- time-reversal based source encoding gradient estimator

$$(c(x)^{-2}\partial_t^2 - \Delta)p^{PA}(x, t) = 0, \quad p^{PA}(x, t = 0) = p_0, \quad f^{PA} = Mp^{PA}$$
$$f^{PA} = MAp_0$$
$$\hat{p_0} = \underset{p_0 \in \mathcal{C}}{\operatorname{argmin}} \left\| MAp_0 - f^{PA} \right\|_2^2 + \mathcal{R}(p_0)$$

- ✓ variational approach
- \checkmark first order optimization with early stopping
 - ! model acoustic properties
 - ! acquisition model discrepancies: laser excitation, rotation
 - ! model /calibrate piezoelectric sensor properties: impulse response, angular sensitivity, ...

Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator in Photoacoustic Tomography, *Inverse Problems 32(11)*.

Optical & Spectral Inversion: Overview



- mapping from c to (μ_a, μ_s, Γ) : spectra?
- q: light source properties?
- mapping from (μ_a, μ_s, q) to Φ : non-linear.

Radiative transfer equation

$$(v \cdot \nabla + \mu_a(x) + \mu_s(x)) \phi(x, v) = q(x, v) + \mu_s(x) \int \Theta(v, v') \phi(x, v') dv'$$

$$\Phi(x) = \int \phi(x, v) dv, \qquad ! (x, v) \in \mathbb{R}^5 \rightsquigarrow \text{ direct FEM infeasible.}$$

Diffusion approximation

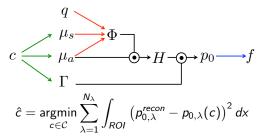
$$(\mu_a(x) - \nabla \cdot \kappa(x) \nabla) \Phi(x) = \int q(x, v) dv, \quad \kappa = \frac{1}{\nu(\mu_a + \mu_s(1 - g))}$$

source modelling? diffusivity matching?

Toast++

Schweiger, Arridge, 2014. The Toast++ software suite for forward and inverse modeling in optical tomography, *Journal of Biomedical Optics*.

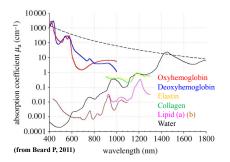
Model Based Inversion



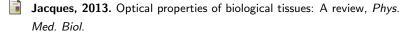
- solve via iterative first order method (L-BFGS)
- derivatives of Φ(μ_a, μ_s) via adjoint method: two solves of light model per iteration (per wavelength).
- grid/mesh interpolation
- **Malone, Powell, Cox, Arridge, 2015.** Reconstruction-classification method for quantitative photoacoustic tomography, *JBO.*

- well-controlled laboratory experiment
- full characterization of optical, acoustic and thermoelastic properties of phantom (sO₂ analogue)
- examined sensitivities, computational aspects, etc.
- promising results but a lot to improve
- **Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.** Three-dimensional photoacoustic imaging and inversion for accurate quantification of chromophore distributions, *Proc. SPIE 2017.*

Optical Parameters of Biological Tissues



- based on different studies with different techniques
- mix of model assumptions and measurements
- often aimed at providing "somewhat" realistic values for simulations, not precise values for inversion
- the more you read about it, the less confident you get



Summary

Mammography scanner:

- novel diagnostic information from optical and acoustic properties
- high res, quantitative, deep into the breast
- 5 years of design, specification, component improvement
- things are coming together, stress levels are rising...

3D USCT:

- proof-of-concept studies of TD-FWI for high res 3D USCT in < 24h
- stochastic L-BFGS with source encoding
- time reversal based gradient computation
- multi-grid initialization

3D QPAT:

• we'll see how far we get :)

UCL

- L, Pérez-Liva, Treeby, Cox, 2020. Time-Domain Full Waveform Inversion for High Resolution 3D Ultrasound Computed Tomography of the Breast, *in preparation*.
 - **Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.** Three-dimensional photoacoustic imaging and inversion for accurate quantification of chromophore distributions, *Proc. SPIE 2017.*

-

Breast Imaging with USCT and PAT

Thank you for your attention!

- **L, Pérez-Liva, Treeby, Cox, 2020.** Time-Domain Full Waveform Inversion for High Resolution 3D Ultrasound Computed Tomography of the Breast, *in preparation*.
 - **Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.** Three-dimensional photoacoustic imaging and inversion for accurate quantification of chromophore distributions, *Proc. SPIE 2017.*

Breast Imaging with USCT and PAT