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Photoacoustic Sensing Systems
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High res 3D PA images require sampling acoustic waves with a
frequency content in the tens of MHz over cm scale apertures.

Nyquist criterion results in tens of pm scale sampling intervals
—> several thousand detection points.

Sequential scanning currently takes several minutes.

Crucial limitation for clinical, spectral and dynamical PAT (4D PAT).
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Photoacoustic Sensing Systems
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Key observation and idea:

» Nyquist is too conservative (only band-limitlessness is assumed).

» Typical targets have additional structure, e.g., low spatial complexity

(sparsity).

» Regularly sampled data is highly redundant.

» Non-redundant part could be sensed faster.

> Accelerated acquisition without significant loss of image quality.
Established as compressed sensing, successful in similar modalities.
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Novel Fabry-Pérot-Based Sensing Systems
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» Single-point sub-sampling (structured or random).

» Patterned interrogation similar to "single-pixel” Rice camera (via
micromirror array).

» Multi-beam scanning + sub-sampling.

Applicable to other sequential scanning schemes, see Huynh et al., 2014,
2015, 2016 for technical details.
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Standard Reconstruction & Numerical Wave Propagation

Analytic methods, e.g. eigenfunction expansion and closed-form
filtered-backprojection, are too restrictive for us.

Time Reversal (TR):
> "Least restrictive PAT reconstruction”
» Sending the recorded waves "back” into volume.

» Requires a numerical model for acoustic wave propagation.

k-Wave® implements a k-space pseudospectral method to solve
the underlying system of first order conservation laws:

» Compute spatial derivatives in Fourier space: 3D FFTs.

» Modify finite temporal differences by k-space operator and use
staggered grids for accuracy and robustness.

Perfectly matched layer to simulate free-space propagation. @2
Parallel/GPU computing leads to massive speed-ups.

v

v

NVIDIA.

*B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox for the simulation
and reconstruction of photoacoustic wave fields, Journal of Biomedical Optics.
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Time Reversal for Sub-Sampled Data &

(a) IC, n =256° (b) high con., IC, n = 128% (c) sub-sampling, 128x

(d) TR1 (e) TR2 (f) TR 2, sub-sampled

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Time Reversal for Sub-Sampled Data Il &

T

(a) IC, n =256° (b) high con., IC, n = 128% c) sub-sampling, 1/128

(d) TR1 (e) TR2 (f) TR 2, sub-sampled

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Variational Approaches & the PAT

Solving variational regularization problems
p = argmin {3[|CAp — |5 + AT (p)}
p=0
iteratively by first-order methods requires implementation of A and A*.

k-Wave vyields a discrete representation A,. For A*, one can

1) adjoint k-Wave iteration to obtain (A)* (algebraic adjoint):
v high numerical accuracy.
I tedious derivation, specific for k-Wave, limited insights.

Huang, Wang, Nie, Wang, Anastasio, 2013. /EEE Trans Med Imaging

2) derive analytical adjoint and discretize it, e.g., (A*)..
v~ good numerical accuracy.
v simple proof, theoretical insights, generalizes to various numerical
schemes.
Arridge, Betcke, Cox, L, Treeby, 2015. On the Adjoint Operator in
Photoacoustic Tomography, (submitted, arXiv:1602.02027).



Comparison for Conventional Data &

p = argmin {%HAp —fl5+ )\J(p)}
p=0

(e) n=128® (f) TR () LS+ (h) TV+

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view




Sub Sampled Data, Best Case Scenario

p = argmin {31CAp — £°I3 + A7 (p) }

(a) n= 128 (b) TR (c) L2+ ) TV+

(e) SubSam, 128x (f) TR ) L2+ (h) TV+

sensor on top; inverse crime data sampled at Nyqunst; max intensity proj., side view



Inverse Crimes & Nyquist Rates

Data created by the same forward model used for reconstruction.

I Conventional data was sampled at Nyquist rates in space and time.
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(a) co+ 2 (c) pressure-time courses

To obtain more realistic results:
» Generate data with perturbed, heterogeneous acoustic model.
» Model inhomogenous sensitivity and noise level of sensor channels.
» Conventional, "full” data is acquired below spatial Nyquist rate.



Sub Sampled Data, Realistic Case Scenario

Conventional data acquired on 2 x 2 too coarse grid.

(d) single point (e) TV+Br, 1x (f) TV+Br, 8x (g) TV+Br, 32x
".

2
e
(h) patterned inter. (i) TV+Br, 1x (j) TV+Br, 8x (k) TV+Br, 32x

sensor on top; max intensity proj., side view
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Leaving the Comfort Zone: Reproduction on Real Data &

> Two polythene tubes filled with > 45 frames (15min for conventional
10/100% ink. scanning per frame).

> Stop-motion-style data acquisition ~ » Conventional data reconstructions
of pulling one tube end. to validate sub-sampling.




Conventional "Full” Data &

TR & TV denoising




Random Point Sub-Sampled Data, 4x &

TR & TV denoising




Random Point Sub-Sampled Data, 8x &

TV+

TR & TV denoising




Random Point Sub-Sampled Data, 16x &

TR & TV denoising




In Vivo Measurements: Conventional Data &

TR & TV denoising Bregman TV+
Thanks to Olumide Ogunlade for the excellent data!
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In Vivo Measurements: 8x &

TR & TV denoising Bregman TV+
Thanks to Olumide Ogunlade for the excellent data!




Spatio-Temporal Reconstruction

Continuous data acquisition
— tradeoff between spatial and temporal resolution.
Different dynamic models:

» Structured Low-Rank (functional imaging with static
anatomies/QPAT).

v

Tracer uptake/wash-in models.

» Perfusion models.

v

Needle guidance

v

Optical flow constraints for joint image reconstruction
and motion estimation.




Low Rank Structures: A Very Simple Example

P=W-.V, P e RV*K w e RV*R v e RR*K R < min(N, K)

Example, N =10000, K =25, R=1:

W e RVx1 V € RPXK P(-,1)

Can we acquire multi-spectral data as fast as one conventional scan?

> spatial sub-sampling by factor K = 25.
> 4 instead of 100 scanning locations per wave length.

» geometric information scattered over data set.



Frame-by-Frame Least Squares

pi = argmin {||G;:Ap — f,c||§} Vi=1,...,K
p=0

ground truth conventional data sub-sam. data

Neither geometry nor spectrum can be recovered!
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Nuclear Norm Regularized Least Squares &

P = argmin {1||CAP — F¢|[2, + A|P|..}

=

A such that rank(P) = 1 + Bregman iter to restore contrast.
ground truth conventional data sub-sam. data

Better, but...



Iterative Least Squares with Non-Convex Projections

Pt =N (PX — vV 3||CAP* — Fe|5) = N (PX —vATCT (CAP* — F9))

v Tl projection onto convex set, e.g., Rﬁ.
v T proximal mapping for convex functional, e.g., nuclear norm, TV.

I' I projection onto non-convex set, e.g., non-negative matrix
factorization.

ground truth conventional data sub-sam. data

Recovers both geometry and spectrum!



Application: Quantitative PAT

Aim: Recover (relative) chromophore concentrations, e.g., blood oxygen
saturation (sOa).

Study: Recover known concentrations in tube phantom. PA
reconstruction only first step in procedure.
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...but data is messy & computations are heavy, so no results yet :/

Joint ongoing struggle with Martina Bargeman Fonseca, Robert Ellwood,
Emma Malone, Lu An, Ben Cox, Simon Arridge and Paul Beard.



Summary

Challenges of fast, high resolution 3D PA sensing:
» Nyquist requires several thousand detection points.
» Sequential schemes are slow.

» Crucial limitation for clinical, spectral and dynamical PAT.

Acceleration through sub-sampling:
» Exploit low spatio-temporal complexity to beat Nyquist.

> Acceleration by sub-sampling the incident wave field to maximize
non-redundancy of data.

» Requires development of novel scanners.

» Demonstrated for Fabry-Pérot interferometer.
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Summary |l

Results:

» Standard reconstruction methods fail on sub-sampled data.
» Adjoint PAT operator allows to use variational/iterative approaches.

» Sparse variational regularization /iterative non-convex projections
give promising results for sub-sampled data.

» Demonstrated on simulated, experimental phantom and in-vivo data.

Challenges:
» Realizing this potential with experimental data requires
» Model refinement/calibration.
» Pre-processing to align data and model.
» More suitable spatio-temporal constraints.
» High computational complexity.
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Thank you for your attention!
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Contrast Enhancement by Bregman lterations

Variational approaches,

p = argmin {3[|CAp — |5+ AT (p)} ,
p

suffer from systematic bias (e.g., contrast loss for TV):

I Problem for quantitative use.

v Iterative enhancement trough Bregman iterations:
(1
et = argmin { 51CAp — (7 + B3 + AT (p) |
P
bk+1 _ bk + (f-c — CA pk+1)

Potential for sub-sampling demonstrated in several other applications.

[4 Osher, Burger, Goldfarb, Xu, Yin, 2006. An iterative
regularization method for total variation-based image restoration,
Multiscale Modeling and Simulation, 4(2):460-489.
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Contrast Enhancement by Bregman lterations
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Iterative Schemes: Adjoint vs. Time Reversal

pFt = r| p —GB Ap —f

(a) Ground truth pg (b) TR (c) iTR (d) iTR+

(e) TV+ (f) BP (h) LS+

sensor on top; 2D slices at y = 128 through the 3D reconstructions.




Near-Infrared Optical Contrast p,
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Figure 1. Absorption coefficient spectra of endogenous tissue
chromophores. Oxyhaemoglobin (HbOs), red line: (http://
omlc.ogi.edu/spectra/hemoglobin/summary.html; 150 gl '),
deoxyhaemoglobin (HHb), blue line: (http://omlc.ogi.edu/
spectra/hemoglobin/summary.html; 150 gl '), water, black
line [22] (80% by volume in tissue;, lipid®, brown line [23]
(20% by volume in tissue), lipid®™, pink line [24], melanin,
black dashed line (http://omlc.ogi.edu/spectra/melanin/
mua.html; pu, corresponds to that in skin). Collagen (green
line) and elastin (yellow line) spectra from [24].

High contrast between blood
and water/lipid.

Light-absorbing structures
embedded in soft tissue.

Gap between oxygenated and
deoxygenated blood
~ functional imaging.

Different wavelengths allow
quantitative spectroscopic
examinations.

Use of contrast agents for
molecular imaging.

from: Paul Beard, 2011. Biomedical photoacoustic imaging, Interface Focus.
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Nyquist Rates in Space and Time &

» Up to now, conventional data was sampled at Nyquist rates in space
and time (numerical phantoms were band-limited in space).

> In experiments, conventional data is usually already sub-sampled in
space but over-sampled in time.

» Reconstruction on a finer spatial grid to exploit high frequency
content of time series.

Example:
Scan a 20mmx20mm with d, = 150pm (133 x 133 locations).

v

» Measured with temporal resolution of §; = 12ns ~ 83MHz.
> Low-pass filtered to 20MHz.
| 4

Reconstructing a signal limited to 20MHz with a sound speed of
1540m s~ would required 6, = 38.5um and §; = 25ns.
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