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Photoacoustic Sensing Systems

from: Beard, 2011, Interface Focus; Jathoul et al., 2015, Nature Photonics

I High res 3D PA images require sampling acoustic waves with a
frequency content in the tens of MHz over cm scale apertures.

I Nyquist criterion results in tens of µm scale sampling intervals
=⇒ several thousand detection points.

I Sequential scanning currently takes several minutes.

I Crucial limitation for clinical, spectral and dynamical PAT (4D PAT).

Felix Lucka, f.lucka@ucl.ac.uk - Accelerated High-Res PAT via Compressed Sensing 9



Photoacoustic Sensing Systems

from: Beard, 2011, Interface Focus; Jathoul et al., 2015, Nature Photonics

Key observation and idea:

I Nyquist is too conservative (only band-limitlessness is assumed).

I Typical targets have additional structure, e.g., low spatial complexity
(sparsity).

I Regularly sampled data is highly redundant.

I Non-redundant part could be sensed faster.

I Accelerated acquisition without significant loss of image quality.

Established as compressed sensing, successful in similar modalities.
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Novel Fabry-Pérot-Based Sensing Systems

fj(t) =

∫
p(x = 0, y , z , t)φj(y , z) dydz

I Single-point sub-sampling (structured or random).

I Patterned interrogation similar to ”single-pixel” Rice camera (via
micromirror array).

I Multi-beam scanning + sub-sampling.

Applicable to other sequential scanning schemes, see Huynh et al., 2014,
2015, 2016 for technical details.
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Standard Reconstruction & Numerical Wave Propagation

Analytic methods, e.g. eigenfunction expansion and closed-form
filtered-backprojection, are too restrictive for us.

Time Reversal (TR):

I ”Least restrictive PAT reconstruction”

I Sending the recorded waves ”back” into volume.

I Requires a numerical model for acoustic wave propagation.

k-Wave♣ implements a k-space pseudospectral method to solve
the underlying system of first order conservation laws:

I Compute spatial derivatives in Fourier space: 3D FFTs.

I Modify finite temporal differences by k-space operator and use
staggered grids for accuracy and robustness.

I Perfectly matched layer to simulate free-space propagation.

I Parallel/GPU computing leads to massive speed-ups.

♣B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox for the simulation

and reconstruction of photoacoustic wave fields, Journal of Biomedical Optics.



A Realistic Numerical Phantom



Time Reversal for Sub-Sampled Data

(a) IC, n = 2563 (b) high con., IC, n = 1283 (c) sub-sampling, 128x

(d) TR 1 (e) TR 2 (f) TR 2, sub-sampled

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Time Reversal for Sub-Sampled Data II

(a) IC, n = 2563 (b) high con., IC, n = 1283 (c) sub-sampling, 1/128

(d) TR 1 (e) TR 2 (f) TR 2, sub-sampled

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Variational Approaches & the PAT Adjoint

Solving variational regularization problems

p̂ = argmin
p>0

{
1
2‖CAp − f c‖22 + λJ (p)

}
iteratively by first-order methods requires implementation of A and A∗.

k-Wave yields a discrete representation Aκ. For A∗, one can

1) adjoint k-Wave iteration to obtain (Aκ)∗ (algebraic adjoint):

X high numerical accuracy.
! tedious derivation, specific for k-Wave, limited insights.

Huang, Wang, Nie, Wang, Anastasio, 2013. IEEE Trans Med Imaging

2) derive analytical adjoint and discretize it, e.g., (A∗)κ.

X good numerical accuracy.
X simple proof, theoretical insights, generalizes to various numerical

schemes.

Arridge, Betcke, Cox, L, Treeby, 2015. On the Adjoint Operator in

Photoacoustic Tomography, (submitted, arXiv:1602.02027).



Comparison for Conventional Data

p̂ = argmin
p>0

{
1
2
‖Ap − f ‖22 + λJ (p)

}

(a) n = 2563 (b) TR (c) LS+ (d) TV+

(e) n = 1283 (f) TR (g) LS+ (h) TV+

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Sub Sampled Data, Best Case Scenario

p̂ = argmin
p>0

{
1
2
‖CAp − f c‖22 + λJ (p)

}

(a) n = 1283 (b) TR (c) L2+ (d) TV+

(e) SubSam, 128x (f) TR (g) L2+ (h) TV+

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Inverse Crimes & Nyquist Rates

! Data created by the same forward model used for reconstruction.

! Conventional data was sampled at Nyquist rates in space and time.

(a) c0 + c̃ (b)
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(c) pressure-time courses

To obtain more realistic results:

I Generate data with perturbed, heterogeneous acoustic model.

I Model inhomogenous sensitivity and noise level of sensor channels.

I Conventional, ”full” data is acquired below spatial Nyquist rate.



Sub Sampled Data, Realistic Case Scenario

Conventional data acquired on 2× 2 too coarse grid.

(d) single point (e) TV+Br, 1x (f) TV+Br, 8x (g) TV+Br, 32x

(h) patterned inter. (i) TV+Br, 1x (j) TV+Br, 8x (k) TV+Br, 32x

sensor on top; max intensity proj., side view
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Leaving the Comfort Zone: Reproduction on Real Data

I Two polythene tubes filled with
10/100% ink.

I Stop-motion-style data acquisition
of pulling one tube end.

I 45 frames (15min for conventional
scanning per frame).

I Conventional data reconstructions
to validate sub-sampling.



Conventional ”Full” Data

TR & TV denoising TV+



Random Point Sub-Sampled Data, 4x

TR & TV denoising TV+



Random Point Sub-Sampled Data, 8x

TR & TV denoising TV+



Random Point Sub-Sampled Data, 16x

TR & TV denoising TV+



In Vivo Measurements: Conventional Data

TR & TV denoising Bregman TV+

Thanks to Olumide Ogunlade for the excellent data!
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In Vivo Measurements: 8x

TR & TV denoising Bregman TV+

Thanks to Olumide Ogunlade for the excellent data!



Spatio-Temporal Reconstruction

Continuous data acquisition

=⇒ tradeoff between spatial and temporal resolution.

Different dynamic models:

I Structured Low-Rank (functional imaging with static
anatomies/QPAT).

I Tracer uptake/wash-in models.

I Perfusion models.

I Needle guidance

I Optical flow constraints for joint image reconstruction
and motion estimation.



Low Rank Structures: A Very Simple Example

P = W · V , P ∈ RN×K , W ∈ RN×R , V ∈ RR×K , R 6 min(N,K )

Example, N = 10 000, K = 25, R = 1:

Can we acquire multi-spectral data as fast as one conventional scan?

I spatial sub-sampling by factor K = 25.

I 4 instead of 100 scanning locations per wave length.

I geometric information scattered over data set.



Frame-by-Frame Least Squares

p̂i = argmin
p>0

{
‖CiAp − f ci ‖22

}
∀ i = 1, . . . ,K

Neither geometry nor spectrum can be recovered!
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Nuclear Norm Regularized Least Squares

P̂ = argmin
P>0

{
1
2‖CAP − F c‖2fro + λ|P|∗

}

λ such that rank(P) = 1 + Bregman iter to restore contrast.

Better, but...



Iterative Least Squares with Non-Convex Projections

Pk+1 = Π
(
Pk − ν∇ 1

2‖CAP
k − F c‖22

)
= Π

(
Pk − νATCT

(
CAPk − F c

))
X Π projection onto convex set, e.g., RN

+.

X Π proximal mapping for convex functional, e.g., nuclear norm, TV.

! Π projection onto non-convex set, e.g., non-negative matrix
factorization.

Recovers both geometry and spectrum!



Application: Quantitative PAT

Aim: Recover (relative) chromophore concentrations, e.g., blood oxygen
saturation (sO2).

Study: Recover known concentrations in tube phantom. PA
reconstruction only first step in procedure.

...but data is messy & computations are heavy, so no results yet :/

Joint ongoing struggle with Martina Bargeman Fonseca, Robert Ellwood,
Emma Malone, Lu An, Ben Cox, Simon Arridge and Paul Beard.



Summary

Challenges of fast, high resolution 3D PA sensing:

I Nyquist requires several thousand detection points.

I Sequential schemes are slow.

I Crucial limitation for clinical, spectral and dynamical PAT.

Acceleration through sub-sampling:

I Exploit low spatio-temporal complexity to beat Nyquist.

I Acceleration by sub-sampling the incident wave field to maximize
non-redundancy of data.

I Requires development of novel scanners.

I Demonstrated for Fabry-Pérot interferometer.
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Summary II

Results:

I Standard reconstruction methods fail on sub-sampled data.

I Adjoint PAT operator allows to use variational/iterative approaches.

I Sparse variational regularization/iterative non-convex projections
give promising results for sub-sampled data.

I Demonstrated on simulated, experimental phantom and in-vivo data.

Challenges:

I Realizing this potential with experimental data requires

I Model refinement/calibration.

I Pre-processing to align data and model.

I More suitable spatio-temporal constraints.

I High computational complexity.
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Thank you for your attention!

Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang, 2016.
Accelerated High-Resolution Photoacoustic Tomography via Compressed
Sensing, submitted, arXiv:1605.00133.

Arridge, Betcke, Cox, L, Treeby, 2015. On the Adjoint Operator in
Photoacoustic Tomography, submitted, arXiv:1602.02027.

We gratefully acknowledge the support of NVIDIA Corporation with the donation

of the Tesla K40 GPU used for this research.
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Contrast Enhancement by Bregman Iterations

Variational approaches,

p̂ = argmin
p

{
1
2‖CAp − f c‖22 + λJ (p)

}
,

suffer from systematic bias (e.g., contrast loss for TV):

! Problem for quantitative use.

X Iterative enhancement trough Bregman iterations:

pk+1 = argmin
p

{
1

2
‖CAp − (f c + bk)‖22 + λJ (p)

}
bk+1 = bk +

(
f c − CApk+1

)
Potential for sub-sampling demonstrated in several other applications.

Osher, Burger, Goldfarb, Xu, Yin, 2006. An iterative
regularization method for total variation-based image restoration,
Multiscale Modeling and Simulation, 4(2):460-489.
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Contrast Enhancement by Bregman Iterations

(a) TV+, cnv data (b) TV+Br, cnv
data

(c) (pTV+Br−pTV+)+,
cnv data

(d) (pTV+Br−pTV+)−,
cnv data

(e) TV+, rSP-128 (f) TV+Br, rSP-128 (g) (pTV+Br−pTV+)+,
rSP-128

(h) (pTV+Br−pTV+)−,
rSP-128

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view
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Iterative Schemes: Adjoint vs. Time Reversal

pk+1 = Π
(

pk − θB
(

Apk − f
))

(a) Ground truth p0 (b) TR (c) iTR (d) iTR+

(e) TV+ (f) BP (g) LS (h) LS+

sensor on top; 2D slices at y = 128 through the 3D reconstructions.



Near-Infrared Optical Contrast µa

I High contrast between blood
and water/lipid.

I Light-absorbing structures
embedded in soft tissue.

I Gap between oxygenated and
deoxygenated blood
 functional imaging.

I Different wavelengths allow
quantitative spectroscopic
examinations.

I Use of contrast agents for
molecular imaging.

from: Paul Beard, 2011. Biomedical photoacoustic imaging, Interface Focus.
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Nyquist Rates in Space and Time

I Up to now, conventional data was sampled at Nyquist rates in space
and time (numerical phantoms were band-limited in space).

I In experiments, conventional data is usually already sub-sampled in
space but over-sampled in time.

I Reconstruction on a finer spatial grid to exploit high frequency
content of time series.

Example:

I Scan a 20mm×20mm with δx = 150µm (133× 133 locations).

I Measured with temporal resolution of δt = 12ns ≈ 83MHz.

I Low-pass filtered to 20MHz.

I Reconstructing a signal limited to 20MHz with a sound speed of
1540m s−1 would required δx = 38.5µm and δt = 25ns.
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