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Photoacoustic effect

I coupling of optical and acoustic
modalities.

I ”hybrid imaging”

I high optical contrast can be read by
high-resolution ultrasound.



Photoacoustic Imaging: Basic Principles

Optical Part

chromophore concentration: ck

optical absorption coefficient: µa(c)

pulsed laser excitation: Φ(µa)

thermalization: H = µaΦ(µa)

Acoustic Part

local pressure increase: p0 = ΓH

elastic wave propagation:

∆p − 1

c2

∂2p

∂2t
= 0

p|t=0 = p0,
∂p

∂t
|t=0 = 0

measurement of pressure time courses:

fi (t) = p(yi , t)

Inverse problems:

! optical inversion (µa) from boundary
data: severely ill-posed.

X acoustic inversion (p0) from boundary
data: moderately ill-posed.

X optical inversion (µa) from internal
data: moderately ill-posed.



Photoacoustic Imaging: Basic Principles

Optical Part

chromophore concentration: ck

optical absorption coefficient: µa(c)

pulsed laser excitation: Φ(µa)

thermalization: H = µaΦ(µa)

Acoustic Part

local pressure increase: p0 = ΓH

elastic wave propagation:

∆p − 1

c2

∂2p

∂2t
= 0

p|t=0 = p0,
∂p

∂t
|t=0 = 0

measurement of pressure time courses:

fi (t) = p(yi , t)

Inverse problems:

! optical inversion (µa) from boundary
data: severely ill-posed.

X acoustic inversion (p0) from boundary
data: moderately ill-posed.

X optical inversion (µa) from internal
data: moderately ill-posed.



Acoustic Inversion: The Spherical Radon Transform

∆p − 1

c2

∂2p

∂2t
= 0

p|t=0 = p0,
∂p

∂t
|t=0 = 0

Poisson-Kirchhoff formula:
The measured signal g at a sensor at
time t can be derived from the sum of
all waves starting from a circle with
radius r = c · t:

f (y , t) = C
∂

∂t
t

∫
Bct

p0(x)dx

:=C
∂

∂t
tMp0

M is called the spherical Radon
transform.

=⇒ PAT inversion is basically a problem
of integral geometry.

=⇒ Connections to Fourier analysis.



Visibility in PAT - A Taste of Microlocal Analysis

A phase space point (x , ξ) is said to be ”visible” (”audible”), if a ray
through x in the direction of ξ hits a sensor within the measurement time.

”Visibility region”: All points x such that (x , ξ) is visible for all ξ.
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Photoacoustic Imaging: Applications

I High contrast between blood and water/lipid.

I Light-absorbing structures in soft tissue.

I Gap between oxygenated and deoxygenated
blood.

I Different wavelengths allow quantitative
spectroscopic examinations.

I Use of contrast agents for molecular imaging.

I Extremely promising future imaging technique!

sources: Paul Beard, 2011. Biomedical photoacoustic imaging,

Interface Focus. Wikimedia Commons



Photoacoustic Sensing Systems

from: Beard, 2011, Interface Focus; Jathoul et al., 2015, Nature Photonics
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Photoacoustic Sensing Systems

from: Beard, 2011, Interface Focus; Jathoul et al., 2015, Nature Photonics

I High res 3D PA images require sampling acoustic waves with a
frequency content in the tens of MHz over cm scale apertures.

I Nyquist criterion results in tens of µm scale sampling intervals
=⇒ several thousand detection points.

I Sequential scanning currently takes several minutes.

I Crucial limitation for clinical, spectral and dynamical PAT (4D PAT).
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Photoacoustic Sensing Systems

from: Beard, 2011, Interface Focus; Jathoul et al., 2015, Nature Photonics

Key observation and idea:

I Nyquist is too conservative (only band-limitlessness is assumed).

I Typical targets have additional structure, e.g., low spatial complexity
(sparsity).

I Regularly sampled data is highly redundant.

I Non-redundant part could be sensed faster.

I Accelerated acquisition without significant loss of image quality.

Established as compressed sensing, successful in similar modalities.
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Novel Fabry-Pérot-Based Sensing Systems

fj(t) =

∫
p(x = 0, y , z , t)φj(y , z) dydz

I Single-point sub-sampling (structured or random).

I Patterned interrogation similar to ”single-pixel” Rice camera (via
micromirror array).

I Multi-beam scanning + sub-sampling.

Applicable to other sequential scanning schemes, see Huynh et al., 2014,
2015, 2016 for technical details.



Novel Fabry-Pérot-Based Sensing Systems

Image model: f ci = Ci fi = Ci (Api + εi ) for each frame i .

Image reconstruction:

I f ci −→ fi , fi −→ pi by standard method, frame-by-frame.

I f ci −→ pi : standard or new method, frame-by-frame.

I F c −→ F , fi −→ pi by standard method, frame-by-frame.

I F c −→ P: Full spatio-temporal method.
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Standard Reconstruction & Numerical Wave Propagation

Analytic methods, e.g. eigenfunction expansion and closed-form
filtered-backprojection, are too restrictive for us.

Time Reversal (TR):

I ”Least restrictive PAT reconstruction”

I Sending the recorded waves ”back” into volume.

I Requires a numerical model for acoustic wave propagation.

k-Wave♣ implements a k-space pseudospectral method to solve
the underlying system of first order conservation laws:

I Compute spatial derivatives in Fourier space: 3D FFTs.

I Modify finite temporal differences by k-space operator and use
staggered grids for accuracy and robustness.

I Perfectly matched layer to simulate free-space propagation.

I Parallel/GPU computing leads to massive speed-ups.

♣B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox for the simulation

and reconstruction of photoacoustic wave fields, Journal of Biomedical Optics.



A Realistic Numerical Phantom



Time Reversal for Sub-Sampled Data

(a) IC, n = 2563 (b) high con., IC, n = 1283 (c) sub-sampling, 128x

(d) TR 1 (e) TR 2 (f) TR 2, sub-sampled

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Time Reversal for Sub-Sampled Data II

(a) IC, n = 2563 (b) high con., IC, n = 1283 (c) sub-sampling, 1/128

(d) TR 1 (e) TR 2 (f) TR 2, sub-sampled

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Variational Approaches & the PAT Adjoint

Solving variational regularization problems

p̂ = argmin
p>0

{
1
2‖CAp − f c‖2

2 + λJ (p)
}

iteratively by first-order methods requires implementation of A and A∗.

k-Wave yields a discrete representation Aκ. For A∗, one can

1) adjoint k-Wave iteration to obtain (Aκ)∗ (algebraic adjoint):

X high numerical accuracy.
! tedious derivation, specific for k-Wave, limited insights.

Huang, Wang, Nie, Wang, Anastasio, 2013. IEEE Trans Med Imaging

2) derive analytical adjoint and discretize it, e.g., (A∗)κ.

X good numerical accuracy.
X simple proof, theoretical insights, generalizes to various numerical

schemes.

Arridge, Betcke, Cox, L, Treeby, 2016.. On the Adjoint Operator in
Photoacoustic Tomography, Inverse Problems 32(11).



Comparison for Conventional Data

p̂ = argmin
p>0

{
1
2
‖Ap − f ‖2

2 + λJ (p)
}

(a) n = 2563 (b) TR (c) LS+ (d) TV+

(e) n = 1283 (f) TR (g) LS+ (h) TV+

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Sub Sampled Data, Best Case Scenario

p̂ = argmin
p>0

{
1
2
‖CAp − f c‖2

2 + λJ (p)
}

(a) n = 1283 (b) TR (c) L2+ (d) TV+

(e) SubSam, 128x (f) TR (g) L2+ (h) TV+

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Contrast Enhancement by Bregman Iterations

Variational approaches,

p̂ = argmin
p

{
1
2‖CAp − f c‖2

2 + λJ (p)
}
,

suffer from systematic bias (e.g., contrast loss for TV):

! Problem for quantitative use.

X Iterative enhancement trough Bregman iterations:

pk+1 = argmin
p

{
1

2
‖CAp − (f c + bk)‖2

2 + λJ (p)

}
bk+1 = bk +

(
f c − CApk+1

)
Potential for sub-sampling demonstrated in several other applications.

Osher, Burger, Goldfarb, Xu, Yin, 2006. An iterative
regularization method for total variation-based image restoration,
Multiscale Modeling and Simulation, 4(2):460-489.
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Contrast Enhancement by Bregman Iterations

(a) TV+, cnv data (b) TV+Br, cnv
data

(c) (pTV+Br−pTV+)+,
cnv data

(d) (pTV+Br−pTV+)−,
cnv data

(e) TV+, rSP-128 (f) TV+Br, rSP-128 (g) (pTV+Br−pTV+)+,
rSP-128

(h) (pTV+Br−pTV+)−,
rSP-128

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view
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Inverse Crimes & Nyquist Rates

! Data created by the same forward model used for reconstruction.

! Conventional data was sampled at Nyquist rates in space and time.

(a) c0 + c̃ (b)

200 300 400 500

t (ns)

-0.01

-0.005

0

0.005

0.01

0.015

"inverse crime"
+ sensitivity variation 0.2
+ medium inhomogeneity 5%

280 290 300 310 320

-0.01

-0.005

(c) pressure-time courses

To obtain more realistic results:

I Generate data with perturbed, heterogeneous acoustic model.

I Model inhomogenous sensitivity and noise level of sensor channels.

I Conventional, ”full” data is acquired below spatial Nyquist rate.



Sub Sampled Data, Realistic Case Scenario

Conventional data acquired on 2× 2 too coarse grid.

(d) single point (e) TV+Br, 1x (f) TV+Br, 8x (g) TV+Br, 32x

(h) patterned inter. (i) TV+Br, 1x (j) TV+Br, 8x (k) TV+Br, 32x

sensor on top; max intensity proj., side view
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Leaving the Comfort Zone: Reproduction on Real Data

I Two polythene tubes filled with
10/100% ink.

I Stop-motion-style data acquisition
of pulling one tube end.

I 45 frames (15min for conventional
scanning per frame).

I Conventional data reconstructions
to validate sub-sampling.



Conventional ”Full” Data

TR & TV denoising TV+



Random Point Sub-Sampled Data, 4x

TR & TV denoising TV+



Random Point Sub-Sampled Data, 8x

TR & TV denoising TV+



Random Point Sub-Sampled Data, 16x

TR & TV denoising TV+



In Vivo Measurements: Conventional Data

TR & TV denoising Bregman TV+

Thanks to Olumide Ogunlade for the excellent data!
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In Vivo Measurements: 8x

TR & TV denoising Bregman TV+

Thanks to Olumide Ogunlade for the excellent data!



Simulation, Exp. Phantom & In-Vivo Studies

Reaching a high acceleration through sub-sampling requires:

I Accurate model fit:

! inhomogeneous optical excitation
! uncertainty of acoustic parameters
! inhomogeneity and defects of FP sensor
! data artifacts by reflections / external sources

=⇒ Develop suitable, automatic pre-processing.
=⇒ Refine forward model used.

I Suitable regularization functionals:

! TV is limited, especially for in-vivo data.
! Experimental phantoms and in-vivo data are different.

=⇒ Develop suitable regularizing functionals.

Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang,
2016. Accelerated High-Resolution Photoacoustic Tomography via
Compressed Sensing, Physics in Medicine and Biology 61(24).



Spatio-Temporal Reconstruction

Continuous data acquisition

=⇒ tradeoff between spatial and temporal resolution.

Different dynamic models:

I Structured Low-Rank (functional imaging with static
anatomies/QPAT).

I Tracer uptake/wash-in models.

I Perfusion models.

I Needle guidance

I Joint image reconstruction and motion estimation.



Low Rank Structures: A Very Simple ”Spectral” Example

P = W · V , P ∈ RN×K , W ∈ RN×R , V ∈ RR×K , R 6 min(N,K )

Example, N = 10 000, K = 25, R = 1:

Can we acquire multi-spectral data as fast as one conventional scan?

I spatial sub-sampling by factor K = 25.

I 4 instead of 100 scanning locations per wave length.

I geometric information scattered over data set.



Frame-by-Frame Least Squares

p̂i = argmin
p>0

{
‖CiAp − f ci ‖2

2

}
∀ i = 1, . . . ,K

Neither geometry nor spectrum can be recovered!

Felix Lucka, f.lucka@ucl.ac.uk - Compressed Sensing for High Res 3D PAT 36



Nuclear Norm Regularized Least Squares

P̂ = argmin
P>0

{
1
2‖CAP − F c‖2

fro + λ|P|∗
}
, |B|∗ =

∑
i

σi (B) (SVD)

λ such that rank(P) = 1 + Bregman iterations to restore contrast.

Better, but...



Iterative Least Squares with Non-Convex Projections

Pk+1 = Π
(
Pk − ν∇ 1

2‖CAP
k − F c‖2

2

)
= Π

(
Pk − νATCT

(
CAPk − F c

))
X Π projection onto convex set, e.g., RN

+.

X Π proximal mapping for convex functional, e.g., nuclear norm, TV.

! Π projection onto non-convex set, e.g., via non-negative matrix
factorization: Π (P) = Ŵ V̂ , where

(Ŵ , V̂ ) = argmin
W ,V>0

‖P −W V ‖2
2, W ∈ RN×R ,V ∈ RR×K



More General Dynamics

p̂i = argmin
p>0

{
1
2‖CiAp − f ci ‖2

2 + λTV (p)
}
, ∀ t = 1, . . . ,T

full data sub-sampled data (16x)



Spatio-Temporal Regularization

Non-parametric spatio-temporal regularization: Find P ∈ RN×T as

P̂ = argmin
P>0

{
T∑
i

1

2
‖CiApi − f ci ‖2

2 + λR(P)

}
,

Lot’s of possibilities, here: Implicit model formulated as joint image and
motion estimation:

(P̂, V̂ ) = argmin
P>0,V

{
T∑
i

1

2
‖CiApi − f ci ‖2

2 +αJ (pi ) +βH(vi ) + γS(P,V )

}

S(P,V ) enforces motion PDE, e.g., optical flow equation:

∂tp(x , t) + (∇xp(x , t)) v(x , t) = 0

Burger, Dirks, Schönlieb, 2016. A Variational Model for Joint
Motion Estimation and Image Reconstruction, arXiv:1607.03255.



Example: TV-TV-Lp Regularization

∂tp(x , t) + (∇xp(x , t)) v(x , t) = 0

 forward differences for ∂t , central differences for ∇x :

(P̂, V̂ ) = argmin
P>0,V

{
T∑
i

1

2
‖CiApi − f ci ‖2

2

+ αTV (pi ) + βTV (vi ) +
γ

p
‖(pi+1 − pi ) + (∇pi ) · vi‖pp

}
proximal-gradient-type scheme:

Pk+1 = proxνR
(
Pk − νATCT

(
CAPk − F c

))
proxνR(P) = argmin

Q>0

{
1

2
‖Q − P‖2

2 + νR(Q)

}

= argmin
Q>0

{
min
V

T∑
i

1

2
‖qi − pi‖2

2

+ ναTV (qi ) + νβTV (vi ) +
νγ

p
‖(qi+1 − qi ) + (∇qi ) · vi‖pp

}



Non-smooth Biconvex Optimization

For p > 1, TV-TV-Lp denoising is a biconvex optimization problem:

min
Q>0,V

S(Q,V ) := min
Q>0,V

T∑
i

1

2
‖qi − pi‖2

2

+ ναTV (qi ) + νβTV (vi ) +
νγ

p
‖(qi+1 − qi ) + (∇qi ) · vi‖pp

Alternating optimization:

Qk+1 = argmin
Q

S(Q,V k) (TV-transport constr. denoising)

V k+1 = argmin
V

S(Qk+1,V ) (TV constr. optical flow estimation)

! Both problems are convex but non-smooth.

! Need to ensure energy decrease.

! warm-start, over-relaxation, inertial, etc: difficult to validate.
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Non-smooth Biconvex Optimization

Alternating optimization:

Qk+1 = argmin
Q

S(Q,V k) (TV-transport constr. denoising)

V k+1 = argmin
V

S(Qk+1,V ) (TV constr. optical flow estimation)

Primal-dual hybrid gradient for both: Too slow convergence in 3D.

Alternating directions method of multipliers (ADMM):

! More difficult to parameterize (to ensure monotone energy).

! Badly conditioned, large-scale least-squares problems.

! Crucial: Choice of iterative solver, preconditioning and stop criterion.

X Overrelaxed ADMM with step size adaptation and CG solver for Q.

X Overrelaxed ADMM with AMG-CG solver for V (frame-by-frame).

Detailed evaluation in process!
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A 2D Example: Frame-by-Frame Least Squares

p̂i = argmin
p>0

{
‖CiAp − f ci ‖2

2

}
∀ i = 1, . . . ,K

phantom full data sub-sampled (25x)
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A 2D Example: Frame-by-Frame Total Variation

p̂i = argmin
p>0

{
‖CiAp − f ci ‖2

2 + λTV (p)
}
∀ i = 1, . . . ,K

phantom full data sub-sampled (25x)
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A 2D Example: TV-TV-L2

(
P̂, V̂

)
= argmin

P>0,V

{
1

2

T∑
i

‖CiApi − f ci ‖2
2

+ αTV (pi ) + βTV (vi ) + γ‖(pi+1 − pi ) +∇pi · vi‖2
2

}

α = β = λTV , γ = 1.

phantom full data sub-sampled (25x)
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A 2D Example: TV-TV-L2

(
P̂, V̂

)
= argmin

P>0,V

{
1

2

T∑
i

‖CiApi − f ci ‖2
2

+ αTV (pi ) + βTV (vi ) + γ‖(pi+1 − pi ) +∇pi · vi‖2
2

}

α = β = λTV , γ = 0.1.

phantom full data sub-sampled (25x)

Felix Lucka, f.lucka@ucl.ac.uk - Compressed Sensing for High Res 3D PAT 47



Artificially Sub-Sampled 3D Stop-Motion Data

full data, TV-FbF 16x, TV-FbF 16x, TVTVL2
α, β = λTV , γ = 0.1



Real Sub-Sampled Dynamic 3D Data (8 Beam Scanner)

sub-average over 8 frames

TV-FbF TVTVL2, α = β = λTV , γ = 0.1



Summary

Photoacoustic Tomography

I Imaging with laser-generated ultrasound (”hybrid imaging”)

I High contrast for light-absorbing structures in soft tissue.

I Variety of promising (pre-)clinical applications.

I Two moderate inverse problems instead of one severely ill-posed.

Challenges of fast, high resolution 3D PA sensing:

I Nyquist requires several thousand detection points.

I Sequential schemes are slow.

I Crucial limitation for clinical, spectral and dynamical PAT.

Acceleration through sub-sampling:

I Exploit low spatio-temporal complexity to beat Nyquist.

I Acceleration by sub-sampling the incident wave field to maximize
non-redundancy of data.

I Requires development of novel scanners.

I Demonstrated for Fabry-Pérot interferometer.



Summary II

Results:

I Standard reconstruction methods fail on sub-sampled data.

I Adjoint PAT operator allows to use variational/iterative approaches.

I Sparse variational regularization/iterative non-convex projections
give promising results for sub-sampled data.

I Demonstrated on simulated, experimental phantom and in-vivo data.

Challenges:

I Realizing this potential with experimental data requires

I Model refinement/calibration.

I Pre-processing to align data and model.

I More suitable spatio-temporal constraints.

I Computationally extensive forward model.

I High dimensional, non-smooth, (non-)convex optimization.



Thank you for your attention!

Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang, 2016.
Accelerated High-Resolution Photoacoustic Tomography via Compressed
Sensing, Physics in Medicine and Biology 61(24).

Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator in
Photoacoustic Tomography, Inverse Problems 32(11).

We gratefully acknowledge the support of NVIDIA Corporation with the donation

of the Tesla K40 GPU used for this research.
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Iterative Schemes: Adjoint vs. Time Reversal

pk+1 = Π
(

pk − θB
(

Apk − f
))

(a) Ground truth p0 (b) TR (c) iTR (d) iTR+

(e) TV+ (f) BP (g) LS (h) LS+

sensor on top; 2D slices at y = 128 through the 3D reconstructions.



Bregman distances

For a proper, convex functional Ψ : Rn −→ R ∪ {∞}, the Bregman
distance Dp

Ψ(f , g) between f , g ∈ Rn for a subgradient p ∈ ∂Ψ(g) is
defined as

Dp
Ψ(f , g) = Ψ(f )−Ψ(g)− 〈p, f − g〉, p ∈ ∂Ψ(g)
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Basically, DΨ(f , g) measures the difference between Ψ and its
linearization in f at another point g



Near-Infrared Optical Contrast µa

I High contrast between blood
and water/lipid.

I Light-absorbing structures
embedded in soft tissue.

I Gap between oxygenated and
deoxygenated blood
 functional imaging.

I Different wavelengths allow
quantitative spectroscopic
examinations.

I Use of contrast agents for
molecular imaging.

from: Paul Beard, 2011. Biomedical photoacoustic imaging, Interface Focus.
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Nyquist Rates in Space and Time

I Up to now, conventional data was sampled at Nyquist rates in space
and time (numerical phantoms were band-limited in space).

I In experiments, conventional data is usually already sub-sampled in
space but over-sampled in time.

I Reconstruction on a finer spatial grid to exploit high frequency
content of time series.

Example:

I Scan a 20mm×20mm with δx = 150µm (133× 133 locations).

I Measured with temporal resolution of δt = 12ns ≈ 83MHz.

I Low-pass filtered to 20MHz.

I Reconstructing a signal limited to 20MHz with a sound speed of
1540m s−1 would required δx = 38.5µm and δt = 25ns.
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