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Bayesian Inference for Inverse Problems

Noisy, ill-posed inverse problems:

f = N (A(u), ε)

Example: f = Au + ε

plike(f |u) ∝

exp
(
− 1

2‖f − A u‖2
Σ−1

ε

)
pprior (u) ∝
exp

(
−λ ‖DT u‖2

2

)
ppost(u|f ) ∝

exp
(
− 1

2‖f − A u‖2
Σ−1

ε
− λ ‖DT u‖2

2

)
Probabilistic representation allows for a rigorous quantification of the
solution’s uncertainties.



Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and ridge regression:

ûλ = argmin
u

{
1
2‖f − A u‖2

2 + λ‖DT u‖1

}
(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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PhD Thesis ”Bayesian Inversion in Biomedical Imaging”

I Submitted 2014, supervised by Martin
Burger and Carsten H. Wolters.

I Linear inverse problems in biomedical
imaging applications.

I Simulated data scenarios and
experimental CT and EEG/MEG data.

I Sparsity by means of
I `p-norm based priors

I Hierarchical prior modeling

I Focus on Bayesian computation and
application.
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Outline
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The `p Approach to Sparse Bayesian Inversion

pprior (u) ∝ exp
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Decrease p from 2 to 0 and stop at p = 1 for convenience.
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Bayesian Inference with `1 Priors

ppost(u|f ) ∝ exp
(
− 1

2‖f − A u‖2
Σ−1

ε
− λ ‖DT u‖1

)

Aims: Bayesian inversion in high dimensions (n→∞).

Priors: Simple `1, total variation (TV), Besov space priors.

Starting points:

Lassas & Siltanen, 2004. Can one use total variation prior
for edge-preserving Bayesian inversion? Inverse Problems, 20.

Lassas, Saksman & Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors. Inverse Problems
and Imaging, 3(1).

Kolehmainen, Lassas, Niinimäki & Siltanen, 2012.
Sparsity-promoting Bayesian inversion. Inverse Problems,
28(2).
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Efficient MCMC Techniques for `1 Priors

Task: Monte Carlo integration by samples from

ppost(u|f ) ∝ exp
(
− 1

2‖f − A u‖2
Σ−1

ε
− λ ‖DT u‖1

)
Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or λ.

Contributions:

I Development of explicit single component Gibbs sampler.

I Tedious implementation for different scenarios.

I Still efficient in high dimensions (n > 106).

I Detailed evaluation and comparison to MH.

L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors. Inverse Problems, 28(12):125012.



Efficient MCMC Techniques for `1 Priors

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d) MH-Iso, 16h

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h (h) SC Gibbs, 16h

Deconvolution, simple `1 prior, n = 513× 513 = 263 169.
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New Theoretical Ideas for an Old Bayesian Debate

ûMAP := argmax
u∈Rn

{ ppost(u|f )} vs. ûCM :=

∫
u ppost(u|f )du

I CM preferred in theory, dismissed in practice.

I MAP discredited by theory, chosen in practice.
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∫
u ppost(u|f )du

I CM preferred in theory, dismissed in practice.

I MAP discredited by theory, chosen in practice.

However:
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I Gaussian priors: MAP = CM. Funny coincidence?

I Theoretical argument has a logical flaw.
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New Theoretical Ideas for an Old Bayesian Debate

ûMAP := argmax
u∈Rn

{ ppost(u|f )} vs. ûCM :=

∫
u ppost(u|f )du

I CM preferred in theory, dismissed in practice.

I MAP discredited by theory, chosen in practice.

Contributions:

I Theoretical rehabilitation of MAP.

I Key: Bayes cost functions based on Bregman distances.

I Gaussian case consistent in this framework.

Burger & L, 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes
estimators, Inverse Problems, 30(11):114004.

Helin & Burger, 2015. Maximum a posteriori probability
estimates in infinite-dimensional Bayesian inverse problems,
Inverse Problems, 31(8)
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Recent Generalization: Slice-Within-Gibbs Sampling

pprior (u) ∝ exp
(
−λ‖DT u‖1

)
Limitations:

I D must be diagonalizable (synthesis priors):

I `q
p-prior: exp

(
−λ‖DT u‖q

p

)
? TV in 2D/3D?

I Non-negativity or other hard-constraints?

Contributions:

I Replace explicit by generalized slice sampling.

I Implementation & evaluation for most common priors.

Neal, 2003. Slice Sampling. Annals of Statistics 31(3)

L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion. submitted, arXiv:1602.08595
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Application to Experimental Data: Walnut-CT

I Cooperation with Samuli Siltanen, Esa Niemi et al.

I Implementation of MCMC methods for Fanbeam-CT.

I Besov and TV prior; non-negativity constraints.

I Stochastic noise modeling.

I Bayesian perspective on limited angle CT.

Use the data set for your own work:
http://www.fips.fi/dataset.php (documentation: arXiv:1502.04064)



Walnut-CT with TV Prior: Full Angle

(a) MAP (b) MAP, special color scale (c) CStd

(d) CM (e) CM, special color scale (f) CM of ‖∇u‖2



Walnut-CT with TV Prior: Full vs. Limited Angle

(a) MAP, full (b) CM, full (c) CStd, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



Walnut-CT with TV Prior: Non-Negativity Constraints, Limited Angle

(a) CM, uncon (b) CM, non-neg

(c) CStd, uncon (d) CStd, non-neg



Outline

1 Introduction: Sparse Bayesian Inversion

2 Sparsity by `p Priors

3 Hierarchical Bayesian Modeling

4 Discussion, Conclusion and Outlook

5 Appendix
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Gaussian increment prior:

pprior (u) ∝
∏

i

exp

(
− (ui+1 − ui )

2

γ

)
I Gaussian variables take values on a characteristic scale, determined

by γ.
I Similar amplitudes are likely, sparsity (= outliers) is unlikely.
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Conditionally Gaussian increment prior:

pprior (u|γ) ∝
∏

i

exp

(
− (ui+1 − ui )

2

γi

)
Scale-invariant hyperprior to approximate un-informative γ−1

i prior:

phyper (γi ) ∝ γ−(α+1)
i exp

(
− β
γi

)
, inverse gamma distribution

0 γ

p
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The Implicit Energy Functional behind HBM

−1 0 1
0
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β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 |x| x2

Implicit prior is a Student’s t-prior with ν = 2α, θ = β/(2α):

pprior (u) ∝
∏

i

(
1 +

u2
i

νθ

)−ν−1
2

ppost(u|f ) ∝ exp

(
− 1

2‖f − A u‖2
Σ−1

ε
− ν−1

2

∑
i

log

(
1 +

u2
i

νθ

))



Two Approaches to Sparsity

feature `p prior HBM

J (u) ‖u‖p
p

ν+1
2

∑
log
(

1 + u2

νθ

)
sparsifying parameter p > 0 ν > 0

quadratic limit p = 2 ν →∞
sparse limit p → 0 ν → 0

limit functional |u|0
∑n

i log (|ui |) if all ui 6= 0,

−∞ else

solutions sparse compressible

differentiable p > 1 always

convex everywhere for p > 1 ‖u‖∞ <
√
νθ

homogeneous yes no

Other stuff related to HBM: Graphical models, general linear models, latent

variable models, Variational Bayes, expectation maximization, scale mixture

models, empirical priors, parametric empirical Bayes, automatic relevance

determination...



Hierarchical, Fully Bayesian Computation

ppost(u, γ|f ) ∝ exp

(
− 1

2‖f − A u‖2
Σ−1

ε
−

n∑
i

(
u2

i + 2β

2γi
+ (α + 1/2) log(γi )

))

All computational approaches (optimization or sampling) exploit the
conditional structure:

I Fix γ and update u by solving 1 n-dim linear problem.

I Fix u and update γ by solving n 1-dim non-linear problems.

Major difficulty: Multimodality of posterior.

Heuristic Full-MAP computation:

I Use MCMC to explore posterior (avoids very sub-optimal modes).

I Initialize alternating optimization by local MCMC averages to
compute local modes.

No guarantee for finding highest mode but usually an acceptable result.



Why HBM? EEG/MEG Source Reconstruction

Aim: Reconstruction of brain activity by non-invasive measurement of
induced electromagnetic fields (bioelectromagnetism) outside of the skull.

source: Wikimedia Commons source: Wikimedia Commons

Notoriously ill-posed problem!
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Workgroup “Methods in Bioelectromagnetism” in Münster

Aim: Improve quality, applicability and reliability of EEG/MEG based
source reconstruction for the presurgical diagnosis of epilepsy patients.



Challenges: Forward Modeling & Computation

Realistic and individual head models for simulating the forward equations.

segmenta(on	  

registra(on	  

surface	  
extrac(on	  

tetrahedral	  
meshing	  

brain	  
anisotropy	  

T1 

T2 

DW 

T2 



Why Non-Convex Functionals?! An Illustration

Reference (green cone) and MAP for Gaussian prior (red cones):

uMAP = argmin
u

{
‖f − A u‖2

2 + λ‖uamp‖2
2

}
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Why Non-Convex Functionals?! An Illustration

Reference (green cone) and MAP for `1 prior (red cones):

uMAP = argmin
u

{
‖f − A u‖2

2 + λ‖uamp‖1

}
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Why Non-Convex Functionals?! An Illustration

Reference (green cone) and single dipole scan (red cone):

uSDS = argmin
u

{
‖f − A u‖2

2 + N1(u)
}
, N1(u) =

{
0 if |uamp|0 = 1

∞ else
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Why Non-Convex Functionals?! An Illustration

Reference (green cone) and HBM-MAP estimate (red cone):

something like uMAP ' argmin
u

{
‖f − A u‖2

2 +
ν − 1

2
log

(
1 +

u2
amp

νθ

)}

Felix Lucka, f.lucka@ulc.ac.uk - Sparse Bayesian Inversion in Biomedical Imaging 27



The Curse of Convexity: Depth Bias

”Theorem”: All MAP estimates for posteriors like

ppost(u|f ) ∝ exp

(
− 1

2‖f − A u‖2
2 +

∑
i

g(|ui |)

)

with priors that are uniform in i (no weighting) with convex g have depth
bias:

I |ûi | has its maximum at the boundary of the gray matter.

I The proof combines properties of the adjoint problem of EEG/MEG
with convex analysis (appendix).

Our (earlier) empirical results for EEG confirm this:

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian
inference for the EEG inverse problem using realistic FE head models:
Depth localization and source separation for focal primary currents.
NeuroImage, 61(4):1364–1382.
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HBM for EEG/MEG Source Reconstruction

I HBM does not suffer from systematic depth miss-localization.

I HBM shows promising results for focal brain networks with
simulated and real data.

I Focus of my PhD work: HBM for EEG-MEG combination.

L., Aydin, Vorwerk, Burger, Wolters, 2013. Hierarchical Fully-Bayesian
Inference for Combined EEG/MEG Source Analysis of Evoked Responses: From
Simulations to Real Data.
BaCI 2013, Geneva.

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Fully-Bayesian Inference for
EEG/MEG combination: Examination of Depth Localization and Source
Separation using Realistic FE Head Models.
Biomag 2012, Paris

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.
NeuroImage, 61(4):1364–1382.
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Summary, Conclusions & Outlook

Bayesian Modeling:

I Sparsity can be modeled in different ways.

I HBM is an interesting but challenging alternative to `p priors.

I Combine `p-type and hierarchical priors: `p-hypermodels.

Bayesian Computation:

I Elementary MCMC samplers may perform very differently.

I Contrary to common beliefs sample-based Bayesian inversion in high
dimensions (n > 106) is feasible if tailored samplers are developed.

I Reason for the efficiency of the Gibbs samplers is unclear.

I Adaptation, parallelization, multimodality, multi-grid.

I Heuristic, fully Bayesian computation for HBM looks promising but
needs more careful examination.
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Summary, Conclusions & Outlook

Bayesian Estimation / Uncertainty Quantification

I MAP estimates are proper Bayes estimators.

I But: Everything beyond ”MAP or CM?” is far more interesting and
can really complement variational approaches.

I However: Extracting information from posterior samples (data
mining) is a non-trivial (future research) topic.

I Application studies had proof-of-concept character up to now.

I Specific UQ task to explore full potential of the Bayesian approach.
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Thank you for your attention!

L, 2016. Fast Gibbs sampling for high-dimensional Bayesian inversion. submitted,
arXiv:1602.08595

L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Münster.

M. Burger, L., 2014. Maximum a posteriori estimates in linear inverse problems
with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference
in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.
NeuroImage, 61(4):1364–1382.
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Efficient MCMC Techniques for `1 Priors
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MH,     λ = 100
MH,     λ = 200
MH,     λ = 400
Gibbs, λ = 100
Gibbs, λ = 200
Gibbs, λ = 400

Temporal autocorrelation R∗(t) for 1D TV-deblurring, n = 63.
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Efficient MCMC Techniques for `1 Priors)
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Temporal autocorrelation R∗(t) for 1D TV-deblurring.
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Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

I For λn = const., n −→∞ the TV prior diverges.

I CM diverges.

I MAP converges to edge-preserving limit.
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Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

I For λn ∝
√

n + 1, n −→∞ the TV prior converges to a smoothness prior.

I CM converges to smooth limit.

I MAP converges to constant.
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

I CT using only 45 projection angles and 500 measurement pixel.

real solution data f colormap
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, λ = 500 CM, n = 642, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, λ = 500 CM, n = 1282, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, λ = 500 CM, n = 2562, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Examination of Alternative Priors by MCMC: TV-p

ppost(u) ∝ exp
(
− 1

2‖f − A u‖2
Σ−1

ε
− λ ‖DT u‖p

p

)
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MAP vs. CM Estimates: The Classical View

A theoretical argument ”decides” the conflict: The Bayes cost formalism.

I An estimator is a random variable, as it relies on f and u.

I How does it perform on average? Which estimator is ”best”?

I  Define a cost function Ψ(u, v).

I Bayes cost is the expected cost:

BC (û) =

∫∫
Ψ(u, û(f )) plike(f |u) df pprior (u) du

I Bayes estimator ûBC for given Ψ minimizes Bayes cost. Turns out:

ûBC (f ) = argmin
û

{∫
Ψ(u, û(f )) ppost(u|f ) du

}
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MAP vs. CM Estimates: The Classical View

Main classical arguments pro CM and contra MAP estimates:

I CM is Bayes estimator for Ψ(u, û) = ‖u − û‖2
2 (MSE).

I Also the minimum variance estimator.

I The mean value is intuitive, it is the ”center of mass”, the known
”average”.

I MAP estimate can be seen as an asymptotic Bayes estimator of

Ψε(u, û) =

{
0, if ‖u − û‖∞ 6 ε
1 otherwise,

for ε→ 0 (uniform cost). =⇒ It is not a proper Bayes estimator.

I MAP and CM seem theoretically and computationally fundamentally
different =⇒ one should decide.

I “A real Bayesian would not use the MAP estimate”

I People feel ”ashamed” when they have to compute MAP estimates
(even when their results are good).
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A False Conclusion

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

”MAP estimate can be seen as an asymptotic Bayes estimator of

Ψε(u, û) =

{
0, if ‖u − û‖∞ < ε

1 otherwise,

for ε→ 0.
???=⇒??? It is not a proper Bayes estimator.”

”MAP estimator is asymptotic Bayes estimator for some degenerate Ψ”
;“MAP can’t be Bayes estimator for some proper Ψ” !!!!
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Two New Bayes Cost Functions

Define

(a) ΨLS(u, û) := ‖A(û − u)‖2
Σ−1

ε
+ β‖L(û − u)‖2

2

(b) ΨBrg(u, û) := ‖A(û − u)‖2
Σ−1

ε
+ λDJ (û, u)

for a regular L and β > 0.

Properties:

I Proper, convex cost functions

I For J (u) = β/λ‖Lu‖2
2 (Gaussian case!) we have λDJ (û, u) =

β‖L(û − u)‖2
2, and ΨLS(u, û) = ΨBrg(u, û)!

Theorems:

(I) The CM estimate is the Bayes estimator for ΨLS(u, û)

(II) The MAP estimate is the Bayes estimator for ΨBrg(u, û)
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Bregman distances

For a proper, convex functional Ψ : Rn −→ R ∪ {∞}, the Bregman
distance Dp

Ψ(f , g) between f , g ∈ Rn for a subgradient p ∈ ∂Ψ(g) is
defined as

Dp
Ψ(f , g) = Ψ(f )−Ψ(g)− 〈p, f − g〉, p ∈ ∂Ψ(g)

0

0

J (x)

J (v) + J 0(v)(x� v)

DJ (u, v) = J (u)� J (v)� J 0(v)(u� v)

DJ (u, v)

u v

(e) J (x) = x2

0

J (x)

Dq
J (u, v) =J (u)� J (v)� q(u� v)

with q 2 @J (v)

vuw

Dp
J (u, v)

J (v) + p(x� v)

J (v) + r(x� v)

Dr
J (w, v)

p, r 2 @J (v) = [�1, 1]

(f) J (x) = |x |

Basically, DΨ(f , g) measures the difference between Ψ and its
linearization in f at another point g



Depth Bias: Optimality and the Adjoint Problem

Variational regularization:

û = argmin
u

{
‖f − A u‖2

2 + J (u)
}

First order optimality condition:

−AT (f − A û) + J ′(û)
!

= 0 ⇐⇒ J ′(û) = AT (f − A û)

That means: J ′(û) ∈ Range(AT ). How does Range(AT ) look like?

I AT is a discretization of the adjoint PDE to EEG / MEG.

I It maps electric potentials / magnetic fields to currents in the brain.

I Essentially solves the tCS / TMS brain stimulation problem.

Vallaghé, Papadopoulo, Clerc, 2009. The adjoint method for general
EEG and MEG sensor-based lead field equations Phy. Med. Bio.
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Solutions to the tCS Problem

Wagner, 2015. Optimizing tCS and TMS multi-sensor setups using
realistic head models PhD Thesis, University of Münster.

See his poster: ”Optimized stimulation protocols in transcranial direct
current stimulation”.

J ′(û) ∈ Range(AT ) =⇒ J ′(û) fulfills maximum principle (in continuous
limit) and obtains its maximum at the gray matter boundary!



Depth Bias: The Curse of (Uniform) Convexity

Assume

I J (u) ∝
∑

i g(|ui |) (uniform in i).

I for simplicity, u is scalar.

I g(x) : R+ → R+ non-decreasing: g ′(x) > 0.

If g is convex, s ”inherits” maximum principle:

I g(x) is convex
=⇒ g ′′(x) > 0.

I g ′(x) > 0, g ′′(x) > 0
=⇒ g ′(x) is positive, non-decreasing.

I g ′(|ui |) > g ′(|uj |)
=⇒ |ui | > |uj |.

I (J ′(û))i = g ′(|ûi |) has its maximum on boundary
=⇒ |ûi | has its maximum at the boundary

=⇒ Depth bias!

(nothing really changes in the vectorial case; for g ′(0) 6= 0 or

other non-smoothness, we need subdifferential calculus)
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Depth Bias: The Blessings of Non-Convexity

Assume

I J (u) ∝
∑

i g(|ui |), and that u is scalar.

I g(x) : R+ → R+ non-decreasing: g(x)′ > 0.

If g is non-convex, g ′(x) does not necessarily induce
an order and û does not need to ”inherit” maximum
principle!

But caution:

I We need to analyze second order optimality
condition as well!

Comments:

I Multiple-dipole scans are (extremely) non-convex.

I Heuristic justifies fully-Bayesian inference which
preserves and explores the non-convexity.
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What About Weightings?

Non-uniform convexity J (u) ∝
∑

i g
(
|ui |

wi (Ai )

)
such as WMNE, WMCE,...

Or post-processing by weighting (noise-normalization):

ũi = wi (ûi ), û = argmin
u

{
‖f − A u‖2

2 + J (u)
}

such as sLORETA, DSPM, ...

Does that help?

I Static weights are often optimized to recover single sources.

I Empirically, sub-optimal for multiple sources (contrary to common
misconception).

I Adaptive, iterative weighting often actually optimizes underlying
non-convex model.
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