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Introduction: Edge-preserving image denoising in 1D

Denoising problem:

g̃ = P ftrue + ν, ν ∼ N (0, σ2In)
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Solution by variational regularization:

f †α := argmin
f∈Rn

{
Φ(f ) = ‖g̃ − f ‖2

2 + αΨ(f )
}



Denoising by regularization of the increments

Idea: Remove noise-induced oscillations by regularizing the increments,

Ψ(f ) = Ψ(Df ), (Df )i = fi+1 − fi , i = 1, . . . , n − 1.
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First try, Ψ(f ) = ‖Df ‖2
2.
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Denoising by regularization of the increments

Idea: Remove noise-induced oscillations by regularizing the increments,

Ψ(f ) = Ψ(Df ), (Df )i = fi+1 − fi , i = 1, . . . , n − 1.
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First try, Ψ(f ) = ‖Df ‖2
2 =⇒ Result is either noisy or smooth!
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Why is the result smooth?

The solution of

f †α := argmin
f∈Rn

{
‖g̃ − f ‖2

2 + α‖Df ‖2
2

}
= argmin

f∈Rn

∥∥∥∥∥
[

In√
αD

]
f −

[
g̃
0

] ∥∥∥∥∥
2

2

is given by the normal equations[
In√
αD

]T [
In√
αD

]
f †α =

[
In√
αD

]T [
g̃
0

]
⇐⇒ (In + αDTD)f †α = g̃

⇐⇒ f †α = (In + αDTD)−1g̃

How does Rα = (In + αDTD)−1 look like?
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Why is the result smooth?

Rα = (In + αDTD)−1, α = 1
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Why is the result smooth?

Rα = (In + αDTD)−1, α = 10
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Why is the result smooth?

Rα = (In + αDTD)−1, α = 100
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A non-smooth regularizer

For any smooth, convex Ψ(f ), the same problem occurs...

Lesson from previous lectures: A non-smooth approach like
Ψ(f ) = ‖Df ‖1 might be advantageous as it induces sparsity of the
increments (= jumps!).
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A non-smooth regularizer

For any smooth, convex Ψ(f ), the same problem occurs...

Lesson from previous lectures: A non-smooth approach like
Ψ(f ) = ‖Df ‖1 might be advantageous as it induces sparsity of the
increments (= jumps!).
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Why is an `1-norm advantageous?
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‖Df1‖2 = 1.00

‖Df2‖2 = 0.71

‖Df3‖2 = 0.58

‖Df4‖2 = 0.10

‖Df5‖2 = 0.12

‖Df6‖2 = 0.13

I `p>1: Many small jumps are ”cheaper” than a large one.

I `p=1: Splitting a large into smaller steps is not advantageous.

I `p<1: A large jump is ”cheaper” than many small ones.
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Why is an `1-norm advantageous?
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‖Df1‖1.5 = 1.00

‖Df2‖1.5 = 0.79

‖Df3‖1.5 = 0.69

‖Df4‖1.5 = 0.22

‖Df5‖1.5 = 0.23

‖Df6‖1.5 = 0.26

I `p>1: Many small jumps are ”cheaper” than a large one.

I `p=1: Splitting a large into smaller steps is not advantageous.

I `p<1: A large jump is ”cheaper” than many small ones.
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Why is an `1-norm advantageous?
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‖Df1‖1.1 = 1.00

‖Df2‖1.1 = 0.94

‖Df3‖1.1 = 0.91

‖Df4‖1.1 = 0.66

‖Df5‖1.1 = 0.67

‖Df6‖1.1 = 0.68

I `p>1: Many small jumps are ”cheaper” than a large one.

I `p=1: Splitting a large into smaller steps is not advantageous.

I `p<1: A large jump is ”cheaper” than many small ones.
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Why is an `1-norm advantageous?
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‖Df5‖1 = 1.00
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I `p>1: Many small jumps are ”cheaper” than a large one.

I `p=1: Splitting a large into smaller steps is not advantageous.

I `p<1: A large jump is ”cheaper” than many small ones.
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Why is an `1-norm advantageous?
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‖Df1‖0.8 = 1.00

‖Df2‖0.8 = 1.19

‖Df3‖0.8 = 1.32

‖Df4‖0.8 = 3.16

‖Df5‖0.8 = 3.03

‖Df6‖0.8 = 2.87

I `p>1: Many small jumps are ”cheaper” than a large one.

I `p=1: Splitting a large into smaller steps is not advantageous.

I `p<1: A large jump is ”cheaper” than many small ones.
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Why is an `1-norm advantageous?

For g̃ = ftrue + σν, ν ∼ N (0, 1) with increasing σ, we compare

argmin
f∈Rn

{
‖g̃ − f ‖2

2 + ‖Df ‖2
2

}
vs. argmin

f∈Rn

{
‖g̃ − f ‖2

2 + ‖Df ‖1

}
=⇒ `2 fits noise right away, `1 only above a threshold.



The total variation of a function in 1D

Our regularization functional

Ψ(f ) = ‖Df ‖1 =
n−1∑
i

|fi+1 − fi |

can be seen as a discretization of the total variation (TV) of a continuous
one-dimensional function:

TV (f ) := sup
∑
i

|f (xi+1)− f (xi )|,

where the supremum is taken over all partitions
0 = x1 < x2 < . . . < xn+1 = 1.

I If f is piecewise constant, TV (f ) is the sum of the magnitude of its
jumps.

I If f is (weakly) differentiable,

TV (f ) =

∫ 1

0

∥∥∥df

dx

∥∥∥ dx

Felix Lucka, f.lucka@ucl.ac.uk - Total Variation Regularization and Related Topics 11



Generalization to higher dimensions

A generalization to Rd is given by

TV (f ) = sup
v∈V

∫
Ω

f ∇ · v dx ,

V = {v ∈ C∞0 (Ω; Rd) | ess sup
x
‖v(x)‖2 6 1},

I For S ⊂⊂ Ω with a smooth boundary ∂S we have that TV (h1S) is
the surface area of S times h.

I For f ∈W 1,1(Ω), we have that

TV (f ) =

∫
Ω

‖∇f ‖2 dx .

The (Banach) space of functions of bounded variation is defined as

BV (Ω) :={f ∈ L1(Ω) | TV (f ) <∞}
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The Rudin-Osher-Fatemi (ROF) model for image denoising

In 1992, Rudin, Osher and Fatemi proposed this denoising technique:

TV (f )→ min
f

such that

∫
Ω

(g̃ − f )2 dx 6 ε2,

where ε2 is a bound on the variance of the noise.

By introducing a Lagrange multiplier, this is equivalent to

min
f

λ

2

∫
Ω

(g̃ − f )2 dx + TV (f ),

which can be recast to the familiar, discrete denoising model

min
f
‖g̃ − f ‖2

2 + αTV (f ).

An extension to more general inverse problems is given by

min
f
‖g̃ − A(f )‖2

2 + αTV (f ).



Mathematical analysis of TV regularization

The mathematical analysis of TV regularization is a rich and interesting
theory, but needs a lot of preliminaries in functional analysis and convex
optimization.

For this course, we stick to the illustrative, hand-waving style and refer to

M. Burger and S. Osher, 2013. A Guide to the TV Zoo, in: Level
Set and PDE Based Reconstruction Methods in Imaging, Lecture
Notes in Mathematic. Springer International Publishing..

for more details.
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Discrete generalization to higher dimensions

If we use (i , j) to index the pixel in the i th row and j th column of the
discrete, nx × ny sized image f , we can define the isotropic and
anisotropic TV of f as:

TViso(f ) =
∑
(i,j)

√(
f(i+1,j) − f(i,j)

)2
+
(
f(i,j+1) − f(i,j)

)2

TVaniso(f ) =
∑
(i,j)

|f(i+1,j) − f(i,j)|+ |f(i,j+1) − f(i,j)|

with f(Nx+1,j) := f(Nx ,j), f(i,Ny+1) := f(i,Ny ),

which can be derived from different definitions of the TV functional:

TV (f ) = sup
v∈V

∫
Ω

f ∇ · v dx ,

Viso = {v ∈ C∞0 (Ω; Rd) | ess sup
x
‖v(x)‖2 6 1}

Vaniso = {v ∈ C∞0 (Ω; Rd) | ess sup
x
‖v(x)‖1 6 1}



Discrete generalization to higher dimensions

(a) ftrue (b) g̃

(c) isotropic TV recon. (d) anisotropic TV recon

from: Jahn Müller, 2013. Advanced Image Reconstruction and Denoising - Bregmanized (Higher

Order) Total Variation and Application in PET, PhD thesis.
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Limited Angle Computed Tomography (CT)

Traditionally, CT reconstruction is mildly ill-posed. New, limited or sparse angle

setups with high noise levels (fast acquisition) change the situation and

regularization becomes necessary.

(e) Phantom (f) FBP (g) TV

(h) Phantom (i) FBP (j) TV

from: M. Persson, D. Bone and H. Elmqvist, 2001. Total variation norm for three-dimensional

iterative reconstruction in limited view angle tomography, Phys. Med. Biol., 46.



Undersampled magnetic resonance imaging (MRI)

Image reconstruction is mainly achieved by inverting a Fourier transform. New

applications heavily undersample in Fourier (k-)space.

from: K.T. Block, M. Uecker, J. Frahm, 2007. Undersampled Radial MRI with Multiple Coils.

Iterative Image Reconstruction Using a Total Variation Constraint, Magn. Reson. Med., 57.



Fast positron emission tomography (PET)

Standart reconstruction techniques require high photon count rates (= long

acquisition time / high tracer doses) to produce usable images.

(k) EM, 20 minutes (l) EM, 5 sec (m) EM-TV, 5 sec

from: Jahn Müller, 2013. Advanced Image Reconstruction and Denoising -

Bregmanized (Higher Order) Total Variation and Application in PET, PhD

thesis.



Optical nanoscopy

Modern microscopy offering live imaging at nanoscopic scales suffers
from low photon counts.

(a) Data (b) EM-TV

Protein Bruchpilot in active zones of neuromuscular synapses in larval
Drosophila.
From: C. Brune, A. Sawatzky M. Burger, 2011. Primal and Dual Bregman

Methods with Application to Optical Nanoscopy, Int. J. Comput. Vis., 92.



Regression and classification in fMRI-based brain decoding

TV regularization for extracting
information form brain images,
both for regression and
classification tasks.

From V. Michel, A. Gramfort, G. Varoquaux, E. Eger, B. Thirion, 2011.

Total Variation Regularization for fMRI-Based Prediction of Behavior, IEEE

Trans Med Imag, 30(7).
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Reconstruction of ancient frescoes

From M. Fornasier, G. Teschke, R. Ramlau, 2009. A comparison of joint

sparsity and total variation minimization algorithms in a real-life art restoration

problem, Adv. Comput. Math. 31.



Applications: Summary

I TV regularization is particularly successful for reconstructing
boundaries of piecewise constant objects from limited, high-noise
data.

I Links to compressed sensing (cf. Bangti Jin’s lecture)

I Applications beyond biomedical imaging include astronomy,
hyperspectral imaging in geoscience, tracking of sharp fronts in
weather forecasts, the reconstruction of ancient frescoes and many
more...see [Burger and Osher, 2013].

I TV denoising is used as a post-processing step in a lot of
applications (not shown here).
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Computation of Total Variation Regularization

Minimize convex, but non-smooth functional

min
f
‖g̃ − Af ‖2

2 + α‖∇f ‖1.

I Unfortunately, iterative soft thresholding or other proximal gradient
schemes do not work.

I Steepest decent or (quasi-)Newton-type schemes applied to smooth
approximations like

|u| ≈
√

u2 + ε2, or |u| ≈

{
|u| − ε

2 , if |u| > ε
u2

2ε otherwise

small step sizes, dependence on ε.

I Anisotropic TV can be recast into quadratic programming problem.

I Convex optimization techniques like dual projected gradient methods
or primal-dual schemes.
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A general variable splitting approach

We split an unconstrained but coupled problem like

min
f
‖g̃ − Af ‖2

2 + α‖Df ‖1.

into a constrained but uncoupled problem

min
f ,v

‖g̃ − Af ‖2
2 + α‖v‖1, such that Df = v .

by introducing an auxiliary variable v .

More general, split such that

min
f

D(f ) + Ψ(f ) ⇔ min
f ,v

D̃(f ) + Ψ̃(v), such that Ef + Hv = c.

How do we solve equality-constrained convex optimization problems?
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Excursus on equality-constrained convex optimization

Consider an equality-constrained optimization problem in 2D:

minimize Φ(x , y)

subject to c(x , y) = 0

Parameterizing c(x , y) = 0 explicitly and solving a 1D problem is not
always possible or advantageous.



Walk the line?

Intuition: At an optimal point, Φ(x , y) cannot be increasing into a
direction where c(x , y) = 0.

I Walk along c(x , y) = 0 until Φ(x , y) does not change!

I Happens if we walk along a level line of Φ(x , y) or reach a flat part
of Φ(x , y).

In the first case, the gradient of Φ(x , y) and c(x , y) are parallel.



Lagrangian multipliers: Where the name comes from

The gradient of Φ(x , y) and c(x , y) are parallel if

∇x,yΦ(x , y) = −µ∇x,yc(x , y)

µ is called Lagrange multiplier, the ”−” is convention).
If Φ is flat, then ∇x,yΦ(x , y) = 0 and µ = 0 fulfills the equation.



The Lagrange function

The conditions

∇x,yΦ(x , y) = −µ∇x,yc(x , y)

c(x , y) = 0

can be combined by introducing the Lagrange function

L(x , y , µ) := Φ(x , y) + µc(x , y)

Now,
∇x,y ,µL(x , y , µ) = 0

encodes both conditions!

The constrained extrema of Φ(x , y) are critical points of L(x , y , µ), but
they are not local extrema of L(x , y , µ)!
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The method of Lagrange multipliers

With m constraints and x ∈ Rn, the outlined method of Lagrange
multipliers becomes

L(x , µ) := Φ(x) +
m∑
i

µici (x)

∇xL(x , µ) = 0 ⇔ ∇xΦ(x) +
m∑
i

µi∇xci (x) = 0

∇µL(x , µ) = 0 ⇔ ci (x) = 0, i = 1, . . . ,m

An extension to inequality constraints leads to the Karush-Kuhn-Tucker
(KKT) conditions.
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The Lagrange dual function

The Lagrange dual function is defined as

G(µ) := inf
x
L(x , µ) = inf

x

{
Φ(x) +

m∑
i

µici (x)

}

It is always concave! Now, for the primal optimization problem

minimize Φ(x)

subject to c(x) = 0

with optimal value p∗, we can define the dual optimization problem as

maximize G(µ).

We have that G(µ) 6 p∗ for all µ. In particular, g∗ = supµ G(µ) is a
lower bound for p∗.

How to make practical use of that for convex Φ and linear c?
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The dual ascent method

If strong duality holds (e.g., if Φ(x) is strict convex), g∗ = p∗ and we can
recover the optimal x∗ from the optimal µ∗ by solving:

x∗ = argmin
x
L(x , µ∗)

Let’s assume c(x) = Ex − b: L(x , µ) := Φ(x) + µT (Ex − b)

The dual ascent method solves the dual problem via gradient ascent:

I For a given µ, compute x+ = argminx L(x , µ)

I Then ∇G(µ) = Ex+ − b, (residual for the equality constraint!)

The dual ascent iteration is given by:

xk+1 := argmin
x
L(x , µk)

µk+1 :=µk + τ k
(
Exk+1 − b

)
Under strong assumptions and a suitable step size τ k , we have
G(µk+1) > G(µk) and (xk , µk) converge to optimal points.



Augmented Lagrangians & the method of multipliers

Often, dual ascent is not directly applicable or not robust enough!

In augmented Lagrangian techniques, L(x , µ) is modified to

Lρ(x , µ) := Φ(x) + µT (Ex − b) + (ρ/2)‖Ex − b‖2
2,

which can be viewed as the normal Lagrangian for

minimize Φ(x) + (ρ/2)‖Ex − b‖2
2

subject to Ex = b

which is equivalent to the original problem!

The dual ascent for the augmented Lagrangian (method of multipliers)

xk+1 := argmin
x
Lp(x , µk)

µk+1 :=µk + ρ
(
Exk+1 − b

)
is robust and converges under way more general assumptions.



Augmented Lagrangian techniques for split problems

We have

I split our original problem into a decoupled but constrained problem:

min
f ,v

D̃(f ) + Ψ̃(v), such that Ef + Hv = b.

I the method of multipliers to solve constrained problems

Let’s bring them together!

Augmented Lagrangian:

Lp(f , v , µ) = D̃(f ) + Ψ̃(v) + µT (Ef + Hv − b) + ρ/2‖Ef + Hv − b‖2
2

Method or multipliers:

(f k+1, vk+1) := argmin
(f ,v)

Lp(f , v , µk)

µk+1 :=µk + ρ
(
Ef k+1 + Hvk+1 − b

)
The penalty term destroys the decoupling of D̃(f ) and Ψ̃(v)!



Alternating direction method of multipliers (ADMM)

Replace the joint minimization in the first step

(f k+1, vk+1) := argmin
(f ,v)

Lp(f , v , µk)

by a single (or more) alternation over f and v (Gauss-Seidel type):

f k+1 := argmin
f
Lp(f , vk , µk)

vk+1 := argmin
v
Lp(f k+1, v , µk)

µk+1 :=µk + ρ
(
Ef k+1 + Hvk+1 − b

)
That is the alternating direction method of multipliers (ADMM).



Scaled, explicit form of ADMM

We introduce w = µ/ρ (scaled dual variable), combine the linear and
quadratic terms and drop all terms not depending on the variable to
minimize to obtain:

f k+1 := argmin
f

{
D̃(f ) + (ρ/2)‖Ef + Hvk − b + wk‖2

2

}
vk+1 := argmin

v

{
Ψ̃(v) + (ρ/2)‖Ef k+1 + Hv − b + wk‖2

2

}
wk+1 := wk +

(
Ef k+1 + Hvk+1 − b

)
We define the primal residual rk as

rk = Ef k + Hvk − b

Thereby:

wk = w 0 +
∑
i

r i



Convergence of ADMM

If D̃ and Ψ̃ are proper, closed and convex and L0(f , v , µk) has a saddle
point, we have that

I Residual convergence: rk = Ef k + Hvk − b −→ 0 as k −→∞, i.e.,
the artificial split is resolved.

I Objective convergence: D̃(f k) + Ψ̃(vk) −→ p∗, the optimal value of
the primal problem.

I Dual variable convergence: µ −→ µ∗, an optimal dual point.

Practically:
I ADMM converges fast (some tens of iterations) to moderate

accuracy but can then take long to converge to high accuracy
(similar to conjugate gradient methods)

I Different from, e.g. Newton’s method, that converges fast in the
vicinity of the optimal point.

I Therefore, ADMM is popular in non-smooth, large-scale problems
where moderate accuracy is sufficient and Newton’s method is not
applicable.
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ADMM for TV denoising in 1D

Denoising problem:

g̃ = P ftrue + ν, ν ∼ N (0, σ2In)
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Solution by variational regularization:

f †α := argmin
f∈Rn

{
Φ(f ) = 1

2‖g̃ − f ‖2
2 + α‖Df ‖1

}



ADMM for TV denoising in 1D

Φ(f ) = 1
2‖g̃ − f ‖2

2 + α‖Df ‖1

we split by v = Df which corresponds to E = D,H = −Id , b = 0:

f k+1 := argmin
f

{
1

2
‖g̃ − f ‖2

2 + (ρ/2)‖Df − vk + wk‖2
2

}
vk+1 := argmin

v

{
α‖v‖1 + (ρ/2)‖Df k+1 − v + wk‖2

2

}
wk+1 := wk +

(
Df k+1 − vk+1

)
I The first step is a first order Tikhonov regularization with an initial

guess for the edges vk − wk . Solution:

f k+1 =
(
In + ρDTD

)−1 (
g̃ + ρDT (vk − wk)

)
I The second step decouples into one-dimensional problems:

min
s

1
2 (s − t)2 + λ|s|, s = vi , t =

(
Df k+1 + wk

)
i
, λ = α/ρ

The solution is given by the soft thresholding operator Sλ(t).
(cf. slide 23 of Bangti Jin’s lecture).



ADMM for TV denoising in 1D
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ADMM for TV deblurring in 2D

Now we look the deblurring of a nx × ny image convoluted by a Gaussian
kernel:

g̃ = Aftrue + ν, ν ∼ N
(
0, σ2Inx×ny

)

(a) ftrue (b) A ftrue (c) g̃

Solution by minimizing Φ(f ) = 1
2‖g̃ − Af ‖2

2 + αTV (f ), where TV (f ) is
the isotropic TV functional:

TV (f ) =
∑
(i,j)

√(
f(i+1,j) − f(i,j)

)2
+
(
f(i,j+1) − f(i,j)

)2

with f(nx+1,j) := f(nx ,j), f(i,ny+1) := f(i,ny ),



ADMM for TV deblurring in 2D

Φ(f ) = 1
2‖g̃ − Af ‖2

2 + αTV (f )

We split by

v :=

[
vx
vy

]
= Df :=

[
Dx

Dy

]
f ,

where Dx and Dy are the finite difference operators in x and y direction.

The first step,

f k+1 := argmin
f

{
1

2
‖g̃ − Af ‖2

2 + (ρ/2)‖Df − vk + wk‖2
2

}
is again a first order Tikhonov regularization with an initial guess for the
edges vk − wk . Solution:

f k+1 =
(
ATA + ρDT

x Dx + ρDT
y Dy

)−1
hk

hk :=
(
AT g̃ + ρDT

x (vk
x − wk

x ) + ρDT
y (vk

y − wk
y )
)

; w :=

[
wx

wy

]
An iterative solution of the augmented least-squares problem is preferable!



ADMM for TV deblurring in 2D

Φ(f ) = 1
2‖g̃ − Af ‖2

2 + αTV (f ), v :=

[
vx
vy

]
= Df :=

[
Dx

Dy

]
f

The split turns TV (f ) =
∑
(i,j)

√(
f(i+1,j) − f(i,j)

)2
+
(
f(i,j+1) − f(i,j)

)2

into
∑
(i,j)

√
(vx)2

(i,j) + (vy )2
(i,j) =: ‖V ‖2,1, V := [vx , vy ] ,

i.e., the `1 norm of the amplitude (`2-norm) of a vector field v .
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ADMM for TV deblurring in 2D

The problem

vk+1 := argmin
v

{
α‖V ‖2,1 + (ρ/2)‖Df k+1 − v + wk‖2

2

}
decouples into two-dimensional problems:

min
s

1
2 (sx − tx)2 + 1

2 (sy − ty )2 + λ
√

s2
x + s2

y , with λ = α/ρ,

sx = (vx)(i,j) , sy = (vy )(i,j) , tx =
(
Dx f k+1 + wk

x

)
(i,j)

, ty =
(
Dy f k+1 + wk

y

)
(i,j)

The solution is given by the vectorial soft thresholding operator Svec
λ (t):

Svec
λ (t) :=

{
Sλ(‖t‖2)
‖t‖2

t if ‖t‖2 > λ

0 otherwise

which soft threholds on the amplitude of the vector, only.
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ADMM for TV deblurring in 2D

Iteration k = 1

(d) f k (e) vk
x (f) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 2

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 3

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 4

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 5

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 6

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 7

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 8

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 10

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 13

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 17

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 22

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 28

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 35

(a) f k (b) vk
x (c) vk

y
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ADMM for TV deblurring in 2D

Iteration k = 43

(a) f k (b) vk
x (c) vk

y
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General comments on ADMM

I Easy-to-implement stopping criteria based on primal and dual
residuum exist.

I Tuning of ρ is essential for fast convergence, but there are automatic
tuning rules based on primal and dual residuum.

I Sub-problems can (and should!) be solved approximately. This is the
key issue in designing fast ADMM schemes.

I Various modifications and extensions exist.

The best (and very extensive) reference for ADMM is given by

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, 2011.
Distributed Optimization and Statistical Learning via the Alternating
Direction Method of Multipliers, Foundations and Trends in Machine
Learning, 3(1).
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Outline

1 Illustrative Introduction

2 A Formal Introduction

3 Applications of TV Regularization

4 Computation of TV Regularization by ADMM

5 Bregman Iterations
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Regularization bias

Let gtrue = Aftrue be the true data and

fα := argmin
f

{
1

2
‖Af − gtrue‖2

2 + αΨ(f )

}
Due to the minimizing properties, we have

1

2
‖Afα − gtrue‖2

2 + αΨ(fα) 6
1

2
‖Aftrue − gtrue‖2

2 + αΨ(ftrue) = αΨ(ftrue)

and therefore, Ψ(fα) 6 Ψ(ftrue).

This means that regularized solutions always carry a systematic bias in
terms of the regularization functional.

How does this look like for TV?
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The shortcomings of TV regularization
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We loose contrast and fine structure, a simple re-scaling won’t help!
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The shortcomings of TV regularization

g̃ = Aftrue + ν, ν ∼ N
(
0, σ2Inx×ny

)

(a) ftrue (b) fα (c) g̃ − Afα

b = g̃ − Afα should be white noise, but there is still a lot of structure in
it! These structures have been shrunk too strongly. Can we prevent that
by ”adding them back” to the signal and re-run the regularization as

f 2
α := argmin

f

{
1
2‖Af − (g̃ + b)‖2

2 + αTV (f )
}

and even iterate this scheme?



”Adding back noise” for 1D TV denoising
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”Adding back noise” for 1D TV denoising
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”Adding back noise” for 1D TV denoising
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”Adding back noise” for 1D TV denoising
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”Adding back noise” for 1D TV denoising
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”Adding back noise” for 1D TV denoising
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”Adding back noise” for 1D TV denoising
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”Adding back noise” for 1D TV denoising
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”Adding back noise” for 1D TV denoising
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”Adding back noise” for 1D TV denoising
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For k = 1000, f k
α ≈ g̃ !

What is happening in the heuristic iteration?
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”Adding back noise” for 2D TV deblurring

Iteration k = 1

(a) f kα (b) g̃ − Af kα
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”Adding back noise” for 2D TV deblurring

Iteration k = 2

(a) f kα (b) g̃ − Af kα
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”Adding back noise” for 2D TV deblurring

Iteration k = 3

(a) f kα (b) g̃ − Af kα
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”Adding back noise” for 2D TV deblurring

Iteration k = 4

(a) f kα (b) g̃ − Af kα
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”Adding back noise” for 2D TV deblurring

Iteration k = 5

(a) f kα (b) g̃ − Af kα
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”Adding back noise” for 2D TV deblurring

Iteration k = 6

(a) f kα (b) g̃ − Af kα
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”Adding back noise” for 2D TV deblurring

Iteration k = 7

(a) f kα (b) g̃ − Af kα
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”Adding back noise” for 2D TV deblurring

Iteration k = 8

(a) f kα (b) g̃ − Af kα
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”Adding back noise” for 2D TV deblurring

Iteration k = 9

(a) f kα (b) g̃ − Af kα
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”Adding back noise” for 2D TV deblurring

Iteration k = 10

(a) f kα (b) g̃ − Af kα
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Excursus: Subgradients and Bregman Distances

To understand what is happening in the heuristic iteration, we need some
convex analysis:

For a proper, convex functional Ψ : Rn −→ R ∪ {∞}, the subdifferential
∂Ψ(u) at f is defined as

∂Ψ(f ) := {p ∈ Rn |Ψ(g) > Ψ(f ) + 〈p, g − f 〉 , ∀g ∈ Rn} .

I p ∈ ∂Ψ(f ) is called a subgradient of Ψ in f .

I Subdifferentiability extends (Fréchet-)differentiability for the
important class of convex functionals: If Ψ is differentiable in f ,
then ∂Ψ(f ) = {Ψ′(f )}
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Subdifferentiability in 1D

I Ψ(f ) + p(g − f ) describes a line through (f ,Ψ(f )) with slope p.

I The set of all slopes p such that this line is either touching or below
the graph of Ψ(f ) is the subderivative ∂Ψ(f ).

I It is a non-empty, closed interval [p−, p+], where

p− = lim
h↘0

Ψ(f )−Ψ(f − h)

h
, p+ = lim

h↘0

Ψ(f + h)−Ψ(f )

h
.

I Both limits exist and fulfill p− 6 p+.

I If the subderivative contains only one element, i.e., p− = p+, then Ψ
is differentiable at f and Ψ′(f ) = p− = p+.

Classical example:

∂|x | =


1 for x > 0

[−1, 1] for x = 0

−1 for x < 0
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Subdifferentiability and optimality conditions

Reminder of the definition of the subdifferential:

∂Ψ(f ) := {p ∈ Rn |Ψ(g) > Ψ(f ) + 〈p, g − f 〉 , ∀g ∈ Rn} .

A point f ∈ Rn is a minimum of a smooth proper, convex functional
Ψ : Rn −→ R ∪ {∞} if and only if 0 = Ψ′(f ).

Proof: If 0 ∈ ∂Ψ(f ), we have that

0 = 〈0, g − f 〉 6 Ψ(g)−Ψ(f ) ∀g ∈ Rn,

and thereby, f is a global minimizer of Ψ. If 0 /∈ ∂Ψ(f ), there must be at
least one g ∈ Rn such that

Ψ(g) < Ψ(f ) + 〈0, g − f 〉 = Ψ(f ),

and thereby, f cannot be a global minimizer of Ψ.

The uniqueness of the minimizer can only be guaranteed if Ψ(f ) is
strictly convex.
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Subdifferentiability and optimality conditions
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Bregman distances

For a proper, convex functional Ψ : Rn −→ R ∪ {∞}, the Bregman
distance Dp

Ψ(f , g) between f , g ∈ Rn for a subgradient p ∈ ∂Ψ(g) is
defined as

Dp
Ψ(f , g) = Ψ(f )−Ψ(g)− 〈p, f − g〉, p ∈ ∂Ψ(g)

0

0

J (x)

J (v) + J 0(v)(x� v)

DJ (u, v) = J (u)� J (v)� J 0(v)(u� v)

DJ (u, v)

u v

(c) J (x) = x2

0

J (x)

Dq
J (u, v) =J (u)� J (v)� q(u� v)

with q 2 @J (v)

vuw

Dp
J (u, v)

J (v) + p(x� v)

J (v) + r(x� v)

Dr
J (w, v)

p, r 2 @J (v) = [�1, 1]

(d) J (x) = |x |

Basically, DΨ(f , g) measures the difference between Ψ and its
linearization in f at another point g



Bregman distances

I The Bregman distance is not a distance in the usual mathematical
sense (i.e., a metric) as it is, in general, neither symmetric nor
satisfies the triangle inequality.

I DΨ(f , g) > 0 and for strictly convex Ψ(f ), DΨ(f , g) = 0 implies
f = g .

I Bregman distances have become an important tool in variational
regularization

I to derive error estimates and convergence rates (Burger & Osher,
2004).

I to derive optimization schemes like the Split-Bregman algorithm
(Goldstein & Osher, 2009) which is closely related to ADMM.

I to enhance inverse methods by Bregman iterations (what we’re doing
right now!).



”Adding back noise” as a Bregman iteration

The optimality condition for the first iteration

f 1
α = argmin

f

1
2‖g̃ − Af ‖2

2 + αΨ(f )

is given as

0 ∈ −AT (g̃ − Af 1
α ) + α∂Ψ(f 1

α ) ⇐⇒ AT (g̃ − Af 1
α ) ∈ α∂Ψ(f 1

α )

⇐⇒ ATb1 = αp1 with b1 = g̃ − Af 1
α , p1 ∈ ∂Ψ(f 1

α )

Adding back the noise once amounts to:

f 2
α = argmin

f

1
2‖g̃ + b1 − Af ‖2

2 + αΨ(f )

⇐⇒ f 2
α = argmin

f

1
2‖g̃ − Af ‖2

2 + αΨ(f )− 〈ATb1, f 〉

⇐⇒ f 2
α = argmin

f

1
2‖g̃ − Af ‖2

2 + α
(
Ψ(f )−Ψ(f 1

α )− 〈p1, f − f 1
α 〉
)

⇐⇒ f 2
α = argmin

f

1
2‖g̃ − Af ‖2

2 + αDp1

Ψ (f , f 1
α )

(we added and subtracted terms not depending on f !)



”Adding back noise” as a Bregman iteration

More general, the ”adding back noise” iteration

f k+1
α = argmin

f

1
2‖g̃ + bk − Af ‖2

2 + αΨ(f )

bk+1 = bk +
(
g̃ − Af k+1

α

)
is a specific reformulation of the Bregman iteration

f k+1
α = argmin

f
H(f , g̃) + αDpk

Ψ (f , f k
α )

pk ∈ ∂Ψ(f k
α )

to solve
min
f

Ψ(f ) subject to f ∈ argmin
f

H(f , g̃).

L.M. Bregman, 1967. The relaxation method for finding the
common point of convex sets and its application to the solution of
problems in convex programming, USSR Comp. Math. Math. Phys.,
7.



Properties of the Bregman iteration

1
2‖g̃ − Af ‖2

2 + αΨ(f )

Monoton decrease of the residual: ‖g̃ − Af k+1
α ‖2 6 ‖g̃ − Af k

α ‖2.

If there is a f † ∈ argmin‖g̃ − Af ‖2
2 with Ψ(f ) <∞, we have that

Dpk+1

Ψ (f †, f k+1
α ) 6 Dpk

Ψ (f †, f k
α )

For denoising, f k
α converges to g̃ .

Assume that Af † = Aftrue , ‖g̃ − Af †‖2
2 6 ε2 and let f k

α be the Bregman
iteration with data g̃ . As long as ‖g̃ − Af k

α ‖2
2 > ε2 we have that

Dpk+1

Ψ (f †, f k+1
α ) 6 Dpk

Ψ (f †, f k
α )

Semi-convergence to the real solution.

=⇒ A stopping criterion based on the discrepancy is reasonable.
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The Bregman iteration in fast PET

(a) EM, 20 minutes (b) EM, 5 sec

(c) EM-TV, 5 sec (d) Bregman EM-TV, 5 sec

from: Jahn Müller, 2013. Advanced Image Reconstruction and Denoising -

Bregmanized (Higher Order) Total Variation and Application in PET, PhD thesis.



The Bregman iteration in optical nanoscopy

(e) Data (f) EM-TV (g) Bregman EM-TV

Protein Bruchpilot in active zones of neuromuscular synapses in larval
Drosophila.

From: C. Brune, A. Sawatzky M. Burger, 2011. Primal and Dual Bregman

Methods with Application to Optical Nanoscopy, Int. J. Comput. Vis., 92.
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The Bregman iteration in photoacoustic tomography (PAT)



General references and further reading

M. Burger and S. Osher, 2013. A Guide to the TV Zoo, in: Level Set
and PDE Based Reconstruction Methods in Imaging, Lecture Notes in
Mathematic. Springer International Publishing.

M. Burger and S. Osher, 2015. Multiscale Variational Imaging, in:
ICIAM Intelligencer.

C.R. Vogel, 2002. Computational Methods for Inverse Problems, SIAM,
Philadelphia, PA, USA.

S. Boyd and L. Vandenberghe, 2004. Convex Optimization, Cambridge
University Press, New York, USA.

S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, 2011. Distributed
Optimization and Statistical Learning via the Alternating Direction Method
of Multipliers, Foundations and Trends in Machine Learning, 3(1).

M. Benning, C. Brune, M. Burger, J. Müller, 2013. Higher-Order TV
Methods - Enhancement via Bregman Iteration, Journal of Scientific
Computing, 54(2-3).
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