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Light and Sound from Electricity

Figure : source: Wikimedia Commons
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Sound from Light: The Photoacoustic Effect

Production of acoustic waves by the thermalization of absorbed photons:

I A photon is absorbed by ”chromophores”

I The energy is thermalized.

I Heating and cooling translate into local pressure changes.

I Pressure changes propagates as an acoustic wave.

History:

I Discovery in 1880 by Alexander Graham Bell.

I Nothing happened for 100 years.

I Lasers provide the high peak power, spectral purity and directionality
to make use of it.

I Biomedical imaging since mid-1990s
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Photoacoustic Imaging: Basic Principle

Figure : source: Wikimedia Commons
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Photoacoustic Imaging: Contrast

I High contrast between blood
and water/lipid.

I light-absorbing structures
embedded in soft tissue.

I Gap between oxygenated and
deoxygenated blood  
functional imaging

I Different wavelengths allow
quantitative spectroscopic
examinations

I Use of contrast agents for
molecular imaging.

from: Paul Beard, 2011. ”Biomedical photoacoustic imaging”, Interface Focus.
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PAT Applications: Breast Cancer Angiography

Kruger et al, 2010. ”Photoacoustic angiography of the breast.”Med. Phys.

Felix Lucka - Challenges of Dynamic High Resolution Photoacoustic Tomography 5/41



PAT Applications: Skin Cancer Angiography

taken from: http://www.medphys.ucl.ac.uk/research/mle/images.htm
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PAT Applications: Ophthalmic Angiography

Hu et al., 2010. ”Label-free photoacoustic ophthalmic angiography”, Optics

Letters
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PAT Applications: Brain Angiography

Figure : source: Wikimedia Commons

Wang et al., 2003. ”Non-invasive laser-induced photoacoustic tomography for

structural and functional imaging of the brain in vivo”. Nature Biotechnology.
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PAT Applications: Functional Brain Imaging

Figure : source: Wikimedia Commons

”Functional imaging of cerebral hemodynamic changes is response

to whisker stimulation. (a) Noninvasive PAT image of the vascular

pattern in the superficial layer of the rat cortex acquired with the

skin and skull intact. The matrix size of the image was 1,000

(horizontal) X 1,000 (vertical), showing a 2.0 cm x 2,0 cm region.

(b,c) Noninvasive functional PAT images corresponding to left-side

and right-side whiskers stimulation, respectively, acquired with the

skin and skull intact. These two maps of functional representations

of whiskers are superimposed on the image of the vascular pattern

in the superficial cortex shown in (a). (D) Open-skull photograph of

the rat cortical surface. B, bregma; L, lambda; M, midline; A,

activated regions corresponding to whisker stimulation (4 mm x 4

mm).”

Wang et al., 2003. ”Non-invasive laser-induced photoacoustic tomography for

structural and functional imaging of the brain in vivo”. Nature Biotechnology.



PAT Applications: Human Brain Imaging

Huang et al., 2012. ”Aberration correction for transcranial photoacoustic

tomography of primates employing adjunct image data”, J. Biomed. Opt.
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PAT Applications: Intravascular Imaging

Jansen et al., 2011. ”Intravascular photoacoustic imaging of human coronary

atherosclerosis”, Optics Letters
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PAT as an ”Imaging from Coupled Physics”-Technique

Traditional imaging modalities are often of either

I high contrast (healthy vs. unhealthy) but limited spatial resolution.
(e.g. optical tomography (OT), EIT, EEG/MEG)

OR

I high spatial resolution but limited contrast.
(e.g. ultrasound, CT, MRI)

Idea (hybrid imaging):

I Couple high contrast with high resolution modality

I Contrast induced by one modality is read out by the other.

Examples: (Q-)PAT, (Q-)thermoacoustic tomography, ultrasound
modulated-EIT, ultrasound modulated-OT, magnetic impedance-EIT,
current density impedance imaging

Caution: Multimodal imaging is NOT hybrid imaging!
(e.g., PET-CT, PET-MRI, EEG-fMRI,...)

Felix Lucka - Challenges of Dynamic High Resolution Photoacoustic Tomography 12/41



Inverse Problems Perspective on Hybrid Imaging

I High resolution modalities typically lead to inverse problems that
allow for an exact, analytical solution in the best case and can be
solved in a stable way, otherwise.

I In low resolution modalities, coefficients or source terms of elliptic
PDEs have to be recovered from boundary functionals of the
solution =⇒ severely ill-posed inverse problems.

I In hybrid imaging, one first solves the ”nice” high resolution problem
and then solves an elliptic PDE from internal functionals of the
solution =⇒ two moderately ill-posed inverse problems.
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Acoustic Initial Value Problems

Energy absorption:

H = µaΦ

Initial pressure:

p0 = ΓH

Wave propagation:

∆p − 1

c2

∂2p

∂2t
= 0

p|t=0 = p0,
∂p

∂t
|t=0 = 0

Caution: Initial value problems 6= Scattering!
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Taking Measurements
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The Spherical Radon Transform
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The Spherical Radon Transform

Let’s change the perspective and focus
on the sensors!



The Spherical Radon Transform

Assuming a homogenous sound speed,
the PoissonâĂŞKirchhoff say that the
measured signal g at a sensor at time t
can be derived from the sum of all waves
starting from a circle with radius
r = c · t:

g(y , t) = C
∂

∂t
t

∫
Bct

p0(x)dx

:=C
∂

∂t
tAp0

A is called the spherical Radon
transform.

=⇒ PAT inversion is basically a problem
of integral geometry.



The Spherical Radon Transform

Thereby, PAT is similar to the classical
Radon transform behind computed
tomography (CT) where the
measurements consist of line integrals of
the quantity of interest:

g(θ, s) = C

∫
`(θ,s)

p0(x)dx

`(θ, s) =
{

(x1, x2) = (t sin θ + s cos θ,

− t cos θ + s sin θ) | t ∈ R
}



Explicit Inversion Formulas

Eigenfunction expansion and closed-form filtered-backprojection-type
approaches are available but often have restrictive assumptions on

I acoustic properties (homogenous sound speed)

I sensor geometries

I support of photoacoustic source

I optical absorption and dispersion

I computational resources

Relaxation of restrictions and incorporation of a-priori knowledge only in
ad-hoc fashion.

P. Kuchment and L. Kunyansky, 2011., ”Mathematics of Photoacoustic
and Thermoacoustic Tomography”, Handbook of Mathematical Methods
in Imaging, Springer New York.
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Time Reversal

I Sending the recorded
waves ”back” into
volume.

I ”The least restrictive
reconstruction
algorithm for PAT”.

I Needs a numerical
model for acoustic
wave propagation.



Acoustic Wave Propagation: Numerical Solution

We do not solve the wave equation but a system of first order
conservation laws in the main acoustic variables including
additional terms such as for modeling absorption and dispersion.

kWave(∗) implements a k-space pseudospectral method:

I Compute spatial derivatives in Fourier space: 3D FFTs.

I Modify finite temporal differences by k-space operator.

I Use staggered grids for velocities.

I Incorporate perfectly matched layer to simulate free-space
propagation.

I Parallel/GPU computing can lead to massive speed-ups.

(∗)B. Treeby and B. Cox, 2010. ”k-Wave: MATLAB toolbox for the

simulation and reconstruction of photoacoustic wave fields”, Journal

of Biomedical Optics

We gratefully acknowledge the support of NVIDIA Corporation

with the donation of the Tesla K40 GPU used for this research.
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Matrix Formulation, Variational Approaches

All the steps of the numerical iteration to solve of the direct problem can
be combined to a linear equation

f = Ap0

One can derive a numerical adjoint iteration to have a representation of
AT (but its soooooo tedious∗).

This allows to use variational regularization for image reconstruction:

p̂λ = argmin
p

{
1

2
‖Ap − f ‖2

2 + λJ (p)

}
Solve by conjugate gradient, proximal gradient algorithm or ADMM.

(∗) C. Huang, K. Wang, L. Nie, L.V. Wang, M.A. Anastasio, 2013. ”Full-Wave

Iterative Image Reconstruction in Photoacoustic Tomography With Acoustically

Inhomogeneous Media”, IEEE Transactions on Medical Imaging
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A Simple Phantom

(a) Phantom (b) Time reversal (c) AT f

(d) Pseudo inverse (PI) (e) PI + positivity (f) TV + pos

Planar sensor on top, n = 1283, SNR: 10. Maximum intensity projections, side view.



A More Realistic Phantom



Time Reversal and Back Projection

(g) TR, X (h) TR, Y (i) TR, Z (j) Phantom, Z

(k) BP, X (l) BP, Y (m) BP, Z (n) Phantom, Z
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Pseudo Inverse via CGLS (stopped by discrepancy principle)

(a) PI, X (b) PI, Y (c) PI, Z (d) Phantom, Z

(e) PIppTV, X (f) PIppTV, Y (g) PIppTV, Z (h) Phantom, Z
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Positive Pseudo Inverse via Proximal Gradient (discrepancy)

(a) PIPos, X (b) PIPos, Y (c) PIPos, Z (d) Phantom, Z

(e) PIPosppTV, X (f) PIPosppTV, Y (g) PIPosppTV, Z (h) Phantom, Z
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TV regularization/minimization + Positivity

(a) TVregPos, X (b) TVregPos, Y (c) TVregPos, Z (d) Phantom, Z

(e) TVbregPos, X (f) TVbregPos, Y (g) TVbregPos, Z (h) Phantom, Z
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TV minimization + Positivity by Bregman iterations

(a) K=1 (b) K=2 (c) K=3 (d) K=5

(e) K=8 (f) K=12 (g) K=20 (h) Phantom, Z
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Experimental Phantom Data
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Time reversal: Raw and post-processed with TV denoising

(a) TR, X (b) TR, Y (c) TR. Z

(d) TRppTV, X (e) TRppTV, Y (f) TRppTV, Z
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Pseudo Inverse: CGLS vs Gradient Descent (20/10 iterations)

(a) PI, CGLS, X (b) PI, CGLS, Y (c) PI, CGLS. Z

(d) PI, grad, X (e) PI, grad, Y (f) PI, grad, Z
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Positive Pseudo Inverse via Proximal Gradient (10 iterations)

(a) PIPos, X (b) Y (c) Z

(d) PIPos, ppTV, X (e) Y (f) Z
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TV regularization + positivity (20 Iterations) vs TRpp

(a) TVPos, ProxGrad, X (b) Y (c) Z

(d) TRppTV, X (e) Y (f) Z
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TV minimization + positivity via Bregman iterations

(a) K=1 (b) K=2 (c) K=3 (d) K=4

(e) K=6 (f) K=8 (g) K=10 (h) TVPos
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Dynamic High Resolution PAT

from: Paul Beard, 2011. ”Biomedical photoacoustic imaging”, Interface Focus.

Sensors for acoustic pressure:

I Piezoelectric arrays offer a high temporal, but only moderate spatial
resolution. Flexible wrt geometry.

I Fabry Perot (FB) interferometer offer high spatial resolution and
sensitivity but low temporal resolution. Restricted to planar
geometries.
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Sub–Sampling /Compressed Sensing for FB Sensors

tunable laser 
(interrogation) 

micromirror 
array 

photodiode 

photoacoustic 
excitation pulse 

imaging platform 

FP sensor 

I Single-pixel sub-sampling (structured or random)
I Patterned interrogation by micromirror array, similar to ”single-pixel”

Rice camera.

Mathematical formulation

f (ti ) = G (ti )(Ap(ti ) + ε(ti ))
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Spatio–Temporal Regularization

Frame-by-frame (FBF) reconstruction using sparsity constraints

p̂λ(ti ) = argmin
p

{
1

2
‖G (ti )Ap − f (ti )‖2

2 + λJ (p)

}
can already increase temporal resolution as less data is required.

Temporal redundancy of the data can be exploited by spatio-temporal
regularization: Let P = [p(t1), . . . , p(tN)] and

P̂λ,µ = argmin
P

{
N∑
i

1

2
‖G (ti )Ap(ti )− f (ti )‖2

2 + λJ (p(ti )) + µH(P)

}

I low-rank constraints: H(P) = ‖P‖∗ (nuclear norm).

I Decomposition models: P = U + V , H(P) = H1(U) +H2(V )

I Visual flow or optimal transport constraints.
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Summary

I PAT is an emerging biomedical ”Imaging from Coupled
Physics”-technique.

I Non-ionizing, high contrast for light-absorbing structures in soft
tissue.

I Promising (pre-)clinical applications.

I Solve two moderate inverse problems instead of one severely
ill-posed.

I Explicit solutions applicable to specific settings, only.

I Variational regularization approaches need computationally
expensive explicit numerical representation of 3D wave propagation.

I High spatial resolution comes with slow data acquisition.

In our project, we try to overcome this limitation by combining
recent advances in spatio-temporal sub-sampling schemes,
compressed sensing and inverse problems with the development of
tailored data acquisition systems.
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Outlook

A lot of work!
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Thank you for your attention!
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Acoustic Wave Propagation: Mathematical Formulation

First order conservation laws:

∂u

∂t
= − 1

ρ0
∇p (momentum conservation)

∂ρ

∂t
= −ρ0∇ · u (mass conservation)

p = c2
0ρ (pressure-density relation)

with
u: acoustic particle velocity
ρ: acoustic density
ρ0: ambient density
p acoustic pressure
c0 isotr. sound speed

Can be combined to second order wave equation:

∆p − 1

c2

∂2p

∂2t
= 0

p|t=0 = p0,
∂p

∂t
|t=0 = 0

But: System of first order equations is advantageous for modeling and
numerical accuracy.
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Acoustic Wave Propagation: Mathematical Formulation

Including heterogeneity and power law absorption and dispersion:

∂u

∂t
= − 1

ρ0
∇p (momentum conservation)

∂ρ

∂t
= −ρ0∇ · u− u · ∇ρ0 (mass conservation)

p = c2
0 (ρ+ d · ∇ρ0 + Lρ) (pressure-density relation)

L = τ
∂

∂t
(−∆)

y
2 −1 + ν (−∆)

y+1
2 −1 (integro-differential operator)

τ = −2α0c
y−1
0 , ν = 2α0c

y
0 tan(πy/2) (absorption/dispersion coef.)
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