
Deep Learning in Computational Imaging

Felix Lucka

MalGA Seminar - University of Genova

8 Nov 2021



And what do you do for a living?

(a) Modern CT scanner (b) CT scan of a patient’s lung

Source: Wikimedia Commons
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Computational Imaging @ CWI

• headed by Tristan van Leeuwen, 18 members

• mathematics, computer science, (medical) physics & engineering

• advanced computational techniques for 3D imaging

• (inter-)national collaborations from science, industry & medicine

• one of the two main developers of the ASTRA Toolbox

• FleX-ray Lab: custom-made, fully-automated X-ray CT scanner

linked to large-scale computing hardware
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Imaging Across Disciplines

Observational astronomy

Life and material science

microscopy

Medical imaging

CT, MRI, US, PET, SPECT...

Geophysical imaging

(electrical) resistivity, seismic

(ground-penetrating) radar...

Remote sensing

military/intelligence,

earth/climate science

Industrial process imaging
Source: Wikimedia Commons

Mathematical Imaging: Reconstruct spatially distributed of quantities

of interest from indirect observations through algorithms derived from

rigorous mathematics.
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Imaging: An Inverse Problem

Inverse problem: Recover unknowns u (image) from data f via

f = A(u) + ε

• Forward operator A solution of PDE modelling underlying physics.

• Typical inverse problems are ill-posed.

• Stable solution requires a-priori information on u.
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Overview Inverse Problems / Imaging Workflow

mathematical modeling:

physics, PDEs, approximations

reconstruction/inference approach:

regularization, statistical inference,

machine learning

theoretical analysis:

uniqueness, recovery conditions,

stability

reconstruction algorithm:

PDEs, numerical linear algebra,

optimization, MCMC

large-scale computing:

parallel computing, GPU computing

(s · ∇+ µa(x) + µs(x))φ(x , s)

= q(x , s)+µs(x)

∫
Θ(s, s ′)φ(x , s ′)ds ′
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Current Challenges in Computational Imaging

core development for new modalities:

hybrid imaging

more from more:

multi-spectral, multi-modal, higher resolution

same from less:

low-dose, limited-view, compressed, dynamic

break the routine:

real-time, adaptive, explorative

quantitative imaging & uncertainty quantification

machine learning:

embedding, networks for 3D/4D, training data

Input	
Hidden	

Output	



4 Waves of Image Reconstruction

years and years reconstruction error 
computation time 

model 
based analytical sparsity machine 

learning 

Ravishankar, Ye, Fessler, 2020. Image Reconstruction: From

Sparsity to Data-adaptive Methods and Machine Learning, Proc

IEEE Inst Electr Electron Eng. 2020;108(1):86-109.
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Deep Learning in Image Reconstruction

Ravishankar, Ye, Fessler, 2020. Image Reconstruction: From

Sparsity to Data-adaptive Methods and Machine Learning, Proc

IEEE Inst Electr Electron Eng. 2020;108(1):86-109.
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Deep Learning Challenges in Image Reconstruction

Application

• training data

• evaluation

• robustness

Conceptual

• scaling - dimensional reduction

• algorithm design / incorporate imaging physics

• un/self supervised

• task-adaptation (end-to-end)

Software

• coupling CI - DL toolboxes

• real-time imaging
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Training Data for Deep Learning

for algorithm development?

X lot’s of large, open, bench-mark data collections for standard

applications of deep learning (e.g., MNIST)

• few suitable imaging data sets (e.g., fastMRI)

! hardly any suitable projection data sets for X-ray CT

! ! clinical data sets are extra hard to get

for real applications?
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Cone Beam Computed Tomography (CBCT)

Circular cone beam scanning geometry

• common geometry for lab CTs

• certain advantages in medical imaging

taken from: Choi & Baek, ”A new method to reduce cone beam artifacts by optimal combination

of FDK and TV-IR images,” Proc. SPIE 10574, Medical Imaging 2018.



Deep Learning for Clinical CBCT

Public Private Partnership with Planmeca & AMC

• CBCT increasingly important in clinical applications

• tedious and time-consuming task: segmentation → deep learning?

• artifacts impair usability compared to conventional CT

• most challenging: training data acquisition
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Deep Learning for Skull Segmentation from CBCT

• 5 anthropomorphic head phantoms

• scans with clinical CBCT and micro-CT

• semi-manual segmentation from micro-CT as gold standard



Deep Learning for Skull Segmentation from CBCT

• full 3D volume too large for DNNs

• comparison of different dimension-reduction strategies

• impact on particular anatomical structures

Minnema, Wolff, Koivisto, L, Batenburg, Forouzanfar, van Eijnatten,

2021. Comparison of convolutional neural network training strategies for

cone-beam CT image segmentation, Computer Methods and Programs in

Biomedicine 207.



Deep Learning for Skull Segmentation from CBCT

Difference between surface extracted from MS-D-Net segmented CBCT

vs micro-CT-based ground truth segmentation



FleX-ray Lab @ CWI

Source Detector

Sample stage

• custom-built (by TESCAN XRE), fully-automated, highly flexible

• linked to large-scale computing hardware

• Aim: Proof-of-concept experiments directly accessible to

mathematicians and computer scientists.



CBCT Data Collection for Machine Learning

42 Walnuts:

• natural inter-population variability

• hard shell, a softer inside, air filled

cavities

• variety of large-to-fine-scale features

• proxy for human head

• 42 3D samples = a lot of 2D data



CBCT Data Collection for Machine Learning

S•

S•

S•

S•

S•

S•

we provide

• this (and other) data sets on zenodo.org, community ”CI-CWI”

• MATLAB and Python scripts for reading, pre-processing and image

reconstruction on github.com/cicwi/WalnutReconstructionCodes

Der Sarkissian, L, van Eijnatten, Colacicco, Coban, Batenburg, 2019.

A Cone-Beam X-Ray CT Data Collection Designed for Machine Learning,

Scientific Data 6(1).

https://zenodo.org/communities/ci-cwi/
https://github.com/cicwi/WalnutReconstructionCodes


Deep Learning for High Cone-Angle Artifact Reduction

Minnema, van Eijnatten, Der Sarkissian, Doyle, Koivisto, Wolff,

Forouzanfar, L, Batenburg, 2021. Efficient high cone-angle artifact

reduction in circular cone-beam CT using deep learning with

geometry-aware dimension reduction, Phys. Med. Biol. 66.



Geometry-Aware Dimension Reduction



Deep Learning for High Cone-Angle Artifact Reduction

Minnema et al., 2021. , Phys. Med. Biol. 66.



Deep Learning Challenges in Image Reconstruction

Application

• training data

• evaluation

• robustness

Conceptual

• scaling - dimensional reduction

• algorithm design / incorporate imaging physics

• un/self supervised

• task-adaptation (end-to-end)

Software

• coupling CI - DL toolboxes

• real-time imaging

Felix.Lucka@cwi.nl Deep Learning in Computational Imaging 8 Nov 2021



Different Route: Neuronal Network Filtered Backprojection

FBP is 1D data filter followed by backprojection: x̂FBP = A∗(f ∗ y)

NN-FBP: non-linear combi of FBP for different filters fi

learn convolution filters and weights from training data

Pelt, Batenburg, 2013. Fast Tomographic Reconstruction from Limited

Data Using Artificial Neural Networks, IEEE Image Processing, 22 (12).
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Going 3D: NN-FDK

volume of 1024× 1024× 1024

reconstruction time:

28s (FDK) 3225s (SIRT) 76s (NN-FDK) 382s (U-net) 809s (MSD-net)

Lagerwerf, Pelt, Palenstijn, Batenburg, 2020. A Computationally

Efficient Reconstruction Algorithm for Circular Cone-Beam Computed

Tomography Using Shallow Neural Networks , J. Imaging 2020, 6(12).



NN-FDK for High Resolution & High Throughput in 3D

(a) FDK (b) SIRT+, 200 iter (c) NN-FDK, 4 filter (d) MSD-net

similar accuracy as iterative reconstruction at fraction of run time short

training time; scales up to 40963

Lagerwerf et al., 2020. A Computationally Efficient Reconstruction

Algorithm for Circular Cone-Beam Computed Tomography Using Shallow

Neural Networks , J. Imaging 2020, 6(12).



Quantitative Evaluation of Deep Learning-Based Image Reconstruction

Leuschner et al., 2021. Quantitative Comparison of Deep Learning-Based

Image Reconstruction Methods for Low-Dose and Sparse-Angle CT

Applications, J. Imaging, 7(3).



Deep Learning Challenges in Image Reconstruction
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On-the-Fly Machine Learning for Unique Objects

Improve resolution on single object CT reconstruction
• with same scanner

• with limited increase in computation and scan time

Hendriksen, Pelt, Palenstijn, Coban, Batenburg, 2019. On-the-Fly

Machine Learning for Improving Image Resolution in Tomography, Appl.

Sci. 2019., 9, 2445

image sources: Saadatfar et al, 2009; Ketcham et al, 2001



Zooming & Region of Interest Tomography
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On-the-Fly Resolution Improvement Pipeline

• full view (1) and ROI acquisition (2)

• image reconstruction (3), (5)

• preparing training data (4)

• training (6)

• improving resolution (7)
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On-the-Fly Image Improvement Results
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Hendriksen, Pelt, Hendriksen, Palenstijn, Coban, Batenburg, 2019.

On-the-Fly Machine Learning for Improving Image Resolution in

Tomography, Appl. Sci. 2019., 9, 2445



Self-Supervised Image Denoising

Lehtinen, Munkberg, Hasselgren, Laine, Karras, Aittala, Aila, 2018.

Noise2Noise: Learning image restoration without clean data, Proc 35th Int

Conf Mach Learn 80, PMLR.

Batson and Royer, 2019. Noise2Self: Blind denoising by self-supervision,

Proc 36th Int Conf Mach Learn 97, PMLR.



Self-Supervised Learning for Tomography: Noise2Inverse

Hendriksen, Pelt, Batenburg, 2020. Noise2inverse: Self-supervised deep

convolutional denoising for tomography, IEEE TCI.
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Self-Supervised Learning for Tomography: Noise2Inverse

Ground truth
FBP

reconstruction
Total variation
minimization

Deep Image 
Prior

Noise2Inverse Supervised

26.526.224.021.2

46.345.544.645.7PSNR:

PSNR:
FBP-Equivalent dose*: 1K 11K 21K 36K 37K

10.8

* Incident photon count at which FBP obtains same PSNR. [absorption of sample=10%]

Hendriksen, Pelt, Batenburg, 2020. Noise2inverse: Self-supervised deep

convolutional denoising for tomography, IEEE TCI.
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Noise2Inverse on Dynamic Synchrotron Data

Hendriksen et al., 2021. Deep denoising for multi-dimensional

synchrotron X-ray tomography without high-quality reference data,

Scientific Reports.
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Reflectivity-Based Ultrasonic Imaging

Public Private Partnership with ApplusRTD

2D US imaging with linear arrays:

X non-ionizing radiation, mobile, low

operating costs

! non-linear problem, low image quality,

interpretation

Typical workflow:

1. data pre-processing (denoising, filtering,

deconvolution)

2. image formation via beamforming

(Delay-And-Sum)

3. image post-processing (e.g. image

enhancement or segmentation)
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Ultrasonic Imaging Using End-To-End Deep Learning

Key ideas:

• Mapping from acoustic properties to data is non-linear and include

complicated wave-matter interactions

• Delay-And-Sum is localizing linear back-projection approximating

underlying wave physics

• DNNs can correct it and exploit data information end-to-end

...

/

/

...

= 3D/2D feature map, followed by Group Norm

B

D✓ I�f✏

c

= 3D/2D filter with weight standardization

u



Ultrasonic Imaging Using End-To-End Deep Learning
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(b) DAS clean
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(c) DAS noisy

sub-sampled
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(f) end-to-end

Pilikos, Horchens, Batenburg, van Leeuwen, L, 2020. Fast ultrasonic

imaging using end-to-end deep learning, IEEE International Ultrasonics

Symposium.



Single Plane-Wave Imaging Using End-To-End Deep Learning

• ultrafast ultrasound imaging via plane waves

• Embed Stolt’s FK migration end-to-end

(a) (b) (c) (d)

75 PWs, FK migration1 PW, FK migration 1 PW, image-to-image 1 PW, proposed method

Pilikos, de Korte, van Leeuwen, L, 2021. Single Plane-Wave Imaging

using Physics-Based Deep Learning, IEEE International Ultrasonics

Symposium, arXiv:2109.03661.



Deep Learning Challenges in Image Reconstruction

Application

• training data

• evaluation

• robustness

Conceptual

• scaling - dimensional reduction

• algorithm design / incorporate imaging physics

• un/self supervised

• task-adaptation (end-to-end)

Software

• coupling CI - DL toolboxes

• real-time imaging
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ASTRA Toolbox: HPC Building Blocs for CT

• open source software, developed by CWI and Univ. Antwerp

• provides scalable, high-performance GPU primitives for tomography

• flexible with respect to projection geometry

• back-end in the Operator Discretization Library (ODL) software

Integration into Deep Learning frameworks via

• Operator Discretization Library (ODL) software

• Tomosipo



Summary & Outlook

• computational imaging will always keep us busy

• deep learning can help us to keep up

• translation is not trivial

• getting training data for real applications is hard work

• self/un-supervised training maybe viable alternative

• combining analytical methods with data or image domain CNNs

• integrating image formation end-to-end
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U-Net Type Encoder-Decoder Networks

Great results for many applications, but

! detected features have to be copied to deeper layers

! layers are wide, leading to many convolutions

! decoder cannot be used to improve encoder

Better: reuse features, fewer convolutions, mix decoder and encoder

Ronneberger, Fischer, Brox, 2015. U-Net: Convolutional Networks for

Biomedical Image Segmentation, MICCAI.



Mixed Scale Dense Network (MS-D-Net)

• densely connected conv layers

• differently dilated convolutions to mix spatial scales

Pelt, Sethian, 2018. Mixed-scale dense network for image analysis, PNAS

115 (2) 254-259.

Felix.Lucka@cwi.nl Deep Learning in Computational Imaging 8 Nov 2021



Mixed Scale Dense Network (MS-D-Net)

• densely connected conv layers

• differently dilated convolutions to mix spatial scales

Pelt, Sethian, 2018. Mixed-scale dense network for image analysis, PNAS

115 (2) 254-259.

Felix.Lucka@cwi.nl Deep Learning in Computational Imaging 8 Nov 2021



MS-D Net vs U-Net

try it yourself?

• pyTorch implementation:

https://github.com/ahendriksen/msd pytorch

• stand-alone python implementation coming soon!

https://github.com/ahendriksen/msd_pytorch

