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Big Picture: From Qualitative to Quantitative Imaging

Traditional task: Produce results to be interpreted by trained experts
— Qualitative usage of the reconstructed information.

Example: Conventional computer tomography (CT).

Source: Wikimedia Commons
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Big Picture: From Qualitative to Quantitative Imaging

Traditional task: Produce results to be interpreted by trained experts
— Qualitative usage of the reconstructed information.
New demand: Produce results for automatized analysis procedures /
hypothesis testing; multimodal imaging.
= Quantitative usage of the reconstructed information.

Example: Dynamical causal modeling (DCM).

Model 1: Forward Model 2: Backward Model 3: Forward &
Backward
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Source: Andre C. Marreiros et al. (2010), Scholarpedia, 5(7):9568.
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Bayesian Inversion and Uncertainty Quantification

Noisy, ill-posed inverse problems:

f=N(A(u),e)

Example: f = Au+¢
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Probabilistic representation allows for rigorous quantification of
solution’s uncertainties.



Bayesian Inversion and Uncertainty Quantification
Noisy, ill-posed inverse problems:

f=N(Au),e)

Example: f = Au+«¢
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Probabilistic representation allows for rigorous quantification of
solution’s uncertainties.
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity as a-priori constraints are used in variational regularization,
compressed sensing and variable selection:

iy = argmin{%”f — AuH% +/\||DTu||1}

(e.g. total variation, wavelet shrinkage, LASSO,...)
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity as a-priori constraints are used in variational regularization,
compressed sensing and variable selection:

ay = argmin {3 f — Aul3 + XD ul|1}
(e.g. total variation, wavelet shrinkage, LASSO,...)

Sparse Bayesian inversion?
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Uncertainty Quantification for Sparse Bayesian Inversion

m How to model sparsity?
m {1-norm priors.

m Gaussian scale mixture (hierarchical Bayesian)

m {,-norm scale mixture (hierarchical Bayesian)

m How to we compute estimators / UQ measures?
m What can we say about estimators?

m Meaningful UQ measures for sparse inversion/imaging?
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Efficient MCMC for Sparse Image Reconstruction

Task: Monte Carlo integration by samples from

Prost (ul) o< exp (=311f = AulZ_s = A D@)]1 )

Problem: Standard Markov chain Monte Carlo (MCMC)
sampler (Metropolis-Hastings) inefficient for large n or A.
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Efficient MCMC for Sparse Image Reconstruction

Task: Monte Carlo integration by samples from

Prost(ulf) o< exp (=317 = Aul2_. = X |ID()l])

Problem: Standard Markov chain Monte Carlo (MCMC)
sampler (Metropolis-Hastings) inefficient for large n or A.

Contributions:
m Development of different Gibbs samplers.

m Efficient for high-dim. imaging (n > 10°).

@ F.L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion, Inverse Problems.

@ F.L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors, Inverse Problems.
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Efficient MCMC for Sparse Image Reconstruction

Task: Monte Carlo integration by samples from

Prost(ulf) o< exp (=317 = Aul2_. = X |ID()l])

Problem: Standard Markov chain Monte Carlo (MCMC)
sampler (Metropolis-Hastings) inefficient for large n or A.

Work by Marcelo Pereyra et al.:

m Unadjusted Langevin algorithm applied to
Moreau-Yoshida envelopes of posterior energy.

m As easy to implement as proximal gradient descent.

@ Durmus, Moulines, Pereyra, 2016. Efficient Bayesian
computation by proximal Markov chain Monte Carlo: when
Langevin meets Moreau, arXiv:1612.07471.
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Point Estimators in Bayesian Inference for Imaging

Unpp :=argmax { ppost(ulf)} vs. tlew:= /u Dpost (U] f) du
uERN .

State in imaging ~5 years ago:
m CM preferred in theory, inaccessible in practice.
m MAP discredited by theory, accessible in practice.
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Point Estimators in Bayesian Inference for Imaging

Upap := argmax { ppose(u|f)} vs. U= / U Ppost(u] f) du
u€eR”™ .

State in imaging ~5 years ago:
m CM preferred in theory, inaccessible in practice.
m MAP discredited by theory, accessible in practice.
However:
m MAP results looks/performs better or similar to CM.
m Gaussian priors: MAP = CM. Funny coincidence?

m Theoretical argument has a logical flaw.
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Point Estimators in Bayesian Inference for Imaging

Unap 1= arngaX{ ppos/,(u‘f)} VS, ey = / U pposl/(u‘f) du
ueRH, .
State in imaging ~5 years ago:
m CM preferred in theory, inaccessible in practice.
m MAP discredited by theory, accessible in practice.
m
\ .’(

Contributions:
m Theoretical rehabilitation of MAP.
m Key: Bayes cost based on Bregman distances.

m Gaussian case consistent in this framework. &

@ Burger & L, 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes
estimators, Inverse Problems, 30(11).

@ Helin & Burger, 2015. Maximum a posteriori probability estimates J |
in infinite-dimensional Bayesian inverse problems, Inverse
Problems, 31(8). dAA ]
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Experimental Data: Limited-Angle CT

m Cooperation with Samuli Siltanen, Esa Niemi et al.
m Besov and TV prior; non-negativity constraints.

m Stochastic noise modeling.

m Uncertainty quantification for limited angle CT.

Use the data set for your own work: arXiv:1502.04064)
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Walnut-CT with TV Prior: Full vs. Limited Angle

) MAP, full (b) CM, full (c) CStd, full

|\ CWL_

(d) MAP, limited (e) CM, limited (f) CStd, limited
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TV Prior, Non-Negativity Constraints, Limited Angle

(c) CStd, uncon (d) CStd, non-neg
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However...

(a) CStd, full (b) CStd, limited

m What does it really tell me?

m Does the uncertainty decrease?!
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Gaussian increment prior:

Pprior () X Hexp <_w)

m Gaussian variables live on characteristic scale, determined by ~.
m Similar amplitudes are likely, sparsity (= outliers) is unlikely.

ul
— A =25%
— A =50°
— A =100%

0 3 213 1
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Conditionally Gaussian increment prior:

Pprior (u]7y) o 1:[exp (_M)

Vi

Scale-invariant hyperprior to approximate un-informative 7;1 prior:

—(a B
Phyper (Vi) o< (D) exp (_

, Inverse gamma distribution
Yi

(7)

1

Phype

3 213
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The Implicit Energy Functional behind HBM

N

[p=10’ —p=10"—p=107—p=10"p=10"—p—¥]

Implicit prior is a Student's t-prior with v = 2,6 = 5/(2a):

u’Q -
pprior(u) X H (1 + V@)

w2
Ppost(ulf) o exp (;nf At - Y log (1 " 9>>

v—1

2
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Prior Samples

(a) 42 c) 42 ) Cauchy

1

ppri,o’r(u’i) X CXp(i‘“”If‘p) vs. pp'rio'r<“/i> 08 m
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Why HBM? EEG/MEG Source Reconstruction

Aim: Reconstruction of brain activity by non-invasive measurement of
induced electromagnetic fields outside of skull.

source: Wikimedia Commons source: Wikimedia Commons
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Why HBM? EEG/MEG Source Reconstruction

Aim: Reconstruction of brain activity by non-invasive measurement of
induced electromagnetic fields outside of skull.

source: Wikimedia Commons source: Wikimedia Commons

Notoriously ill-posed problem!
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HBM for EEG/MEG Source Reconstruction

m Inversion with log-concave priors (e.g., ¢1-type) suffers from
systematic depth miss-localization, HBM does not.

m HBM shows promising results for focal brain networks with

simulated and real data and EEG-MEG combination.
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@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents, Neurolmage, 61(4):1364-1382.
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Comparison: Two Approaches to Sparsity

feature £, prior HBM
() ol v Slog (1+ 1)
sparsifying parameter p>0 v>0
quadratic limit p=2 v — 00
sparse limit p—0 v—0
limit functional lulo > log (|ug)) if all w; # 0,
—o0 else
solutions sparse compressible
differentiable p>1 always
convex everywhere for p > 1 t]loo < V1O
homogeneous yes no
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Comparison: Two Approaches to Sparsity

feature £, prior HBM
() ol v Slog (1+ 1)
sparsifying parameter p>0 v>0
quadratic limit p=2 v — 00
sparse limit p—0 v—0
limit functional lulo > log (|ug)) if all w; # 0,
—o0 else
solutions sparse compressible
differentiable p>1 always
convex everywhere for p > 1 1]l oo < V10
homogeneous yes no

Combine them to get best (worst?!) of both worlds?
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¢,-hypermodels with generalized Gamma hyperpriors

/.

TP 7
Pprior (U, Y) X exp ( Z <Dl% + % —(ra—1-1/p) log(%)>>

i

Implicit prior with inverse gamma hyperprior:
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(,-Hypermodels & Majorization-Minimization

Posterior with gamma hyperprior (r =1), p=1, and a = 2:

T )
Prost (ul ) ox exp (—illf —Aulf=) (w " ?3))

. 2
K2

Computational scheme for full-MAP estimation equivalent to

majorization-minimization scheme for ¢, /5 regularization (Adaptive
Lasso):

1 | DT |
(k) — in< =||f — =
U —arglrtnm{QHf AU“ ot + Z |DTU| (k—1) }

[4 Bekhti, L, Salmon, Gramfort, 2017. A hierarchical Bayesian
perspective on majorization-minimization for non-convex sparse
regression: application to M/EEG source imaging, almost submitted.
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Uncertainty Quantification for Non-Convex Sparse Recovery
Severely under-determined problems f = Au:
Many sparse solutions consistent with data!
Log-concave priors erase this ambiguity and yield single result.

HBM posteriors get multi-modal.
Traditional UQ measure do not capture these aspects.

Can we preserve but quantify, structure and visualize ambiguity?

) 77$777 e
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Mode Analysis with MCMC & Optimization

m Generate MCMC chain of posterior samples.
m Use every sample as initialization of gradient-based optimization.

m Analyse resulting chain of modes.

Felix.Lucka®cwi.nl - Sparse Bayesian Inference & UQ for Inverse Imaging Problems
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Sparse Source Network Analysis for EMEG Auditory Data

all 364 EEG+MEG all 306 MEG 182 MEG+EEG
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Summary, Outlook & Open Questions

¢,-norm and HBM road to sparsity: Neither perfect but (somewhat)
computationally tractable. ~~ spike-and-slab priors?

m MAP estimates are proper Bayes estimators, modes are meaningful.

m However: Everything beyond point estimation is what's really
interesting.

m Meaningful and interpretable UQ measures for sparse inversion /
imaging that can complement variational approaches?

m Does it really make sense?
(over confidence in ill-posed problems, prior domination)
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Bekhti, L, Salmon, Gramfort, 2017. A hierarchical Bayesian perspective on
majorization-minimization for non-convex sparse regression: application to
M/EEG source imaging, almost submitted.

L, 2016. Fast Gibbs sampling for high-dimensional Bayesian inversion, Inverse
Problems.

L, 2014. Bayesian Inversion in Biomedical Imaging, PhD Thesis, University of
Miinster.

Burger, L, 2014. Maximum-A-Posteriori Estimates in Linear Inverse Problems
with Log-concave Priors are Proper Bayes Estimators, Inverse Problems.

L, 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference
in high-dimensional inverse problems using L1-type priors, Inverse Problems.

L, Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents, Neurolmage.
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Thank you for your attention!

Bekhti, L, Salmon, Gramfort, 2017. A hierarchical Bayesian perspective on
majorization-minimization for non-convex sparse regression: application to
M/EEG source imaging, almost submitted.

L, 2016. Fast Gibbs sampling for high-dimensional Bayesian inversion, Inverse
Problems.

L, 2014. Bayesian Inversion in Biomedical Imaging, PhD Thesis, University of
Miinster.

Burger, L, 2014. Maximum-A-Posteriori Estimates in Linear Inverse Problems
with Log-concave Priors are Proper Bayes Estimators, Inverse Problems.

L, 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference
in high-dimensional inverse problems using L1-type priors, Inverse Problems.

L, Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents, Neurolmage.
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MAP vs. CM Estimates: The Classical View

A theoretical argument "decides"the conflict: The Bayes cost formalism.

m An estimator is a random variable, as it relies on f and wu.
m How does it perform on average? Which estimator is "best’?
m ~ Define a cost function ¥ (u,v).

m Bayes cost is the expected cost:

BC(a) = / / 0 (u, 0)) prige(F10) Af Pprion (u) du

m Bayes estimator @ pc for given ¥ minimizes Bayes cost. Turns out:

ane(f) = avgmin { [ 0(u0(7) ppotlf) |

Uu
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MAP vs. CM Estimates: The Classical View
Main classical arguments pro CM and contra MAP estimates:
m CM is Bayes estimator for ¥(u,4) = ||u — @||3 (MSE).

m Also the minimum variance estimator.

m The mean value is intuitive, it is the "center of mass”, the known
"average".

m MAP estimate can be seen as an asymptotic Bayes estimator of

W, (u, ) 0, if |lu—1d|e <€
e\u,u) = .
1  otherwise,

for € — 0 (uniform cost). = It is not a proper Bayes estimator.

m MAP and CM seem theoretically and computationally fundamentally
different = one should decide.

m “A real Bayesian would not use the MAP estimate”

m People feel "ashamed” when they have to compute MAP estimates
(even when their results are good).
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A False Conclusion

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

"MAP estimate can be seen as an asymptotic Bayes estimator of

0, if [u—ille <e

Y (u,u) = .
(u, @) 1  otherwise,

for e — 0.
?777=—-777 It is not a proper Bayes estimator.”

"MAP estimator is asymptotic Bayes estimator for some degenerate ¥”
# "MAP can't be Bayes estimator for some proper ¥ 11
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Two New Bayes Cost Functions

Define
() Ws(u, @) = [|A(d —w)l|3-2 + BIL(E — )3
(b) W (u, @) == [[A(& — u)[|3, - + ADg (@, u)
for a regular L and 8 > 0.
Properties:

m Proper, convex cost functions

m For J(u) = B/A||Lul|3 (Gaussian case!) we have AD 7 (i, u) =
BIL(E — )13, and Vs (u, ) = Wy (u, @)

Theorems:

(I) The CM estimate is the Bayes estimator for ¥ s(u, @)
(I1) The MAP estimate is the Bayes estimator for W, (u, @)
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Bregman distances

For a proper, convex functional ¥ : R* — R U {00}, the Bregman
distance D%, (f, g) between f,g € R™ for a subgradient p € 9¥(g) is

defined as

Dy(f,9) =Y(f) =¥(g)—(p,.f—g9), pecdV(g)

Dg(;,'u)‘:J(u) - MORECR)
with g € 07 (v)

(d) T (2) = |z

Basically, Dy (f, g) measures the difference between ¥ and its

linearization in f at another point g
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