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Big Picture: From Qualitative to Quantitative Imaging

Traditional task: Produce results to be interpreted by trained experts
=⇒ Qualitative usage of the reconstructed information.

New demand: Produce results for automatized analysis procedures /
hypothesis testing; multimodal imaging.

=⇒ Quantitative usage of the reconstructed information.

Example: Conventional computer tomography (CT).

Source: Wikimedia Commons
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Big Picture: From Qualitative to Quantitative Imaging

Traditional task: Produce results to be interpreted by trained experts
=⇒ Qualitative usage of the reconstructed information.

New demand: Produce results for automatized analysis procedures /
hypothesis testing; multimodal imaging.

=⇒ Quantitative usage of the reconstructed information.

Example: Dynamical causal modeling (DCM).

Source: Andre C. Marreiros et al. (2010), Scholarpedia, 5(7):9568.
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Bayesian Inversion and Uncertainty Quantification

Noisy, ill-posed inverse problems:

f = N (A(u), ε)

Example: f = Au+ ε

plike(f |u) ∝
exp

(
− 1

2‖f −Au‖
2
2

)
pprior(u) ∝
exp

(
−λ ‖DTu‖22

)
ppost(u|f) ∝
exp

(
− 1

2‖f −Au‖
2
2 − λ ‖DTu‖22

)
Probabilistic representation allows for rigorous quantification of
solution’s uncertainties.
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity as a-priori constraints are used in variational regularization,
compressed sensing and variable selection:

ûλ = argmin
u

{
1
2‖f −Au‖

2
2 + λ‖DTu‖1

}
(e.g. total variation, wavelet shrinkage, LASSO,...)

Sparse Bayesian inversion?
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Uncertainty Quantification for Sparse Bayesian Inversion

How to model sparsity?

`1-norm priors.

Gaussian scale mixture (hierarchical Bayesian)

`p-norm scale mixture (hierarchical Bayesian)

How to we compute estimators / UQ measures?

What can we say about estimators?

Meaningful UQ measures for sparse inversion/imaging?



Efficient MCMC for Sparse Image Reconstruction

Task: Monte Carlo integration by samples from

ppost(u|f) ∝ exp
(
− 1

2‖f −Au‖
2
Σ−1

ε
− λ ‖D(u)‖1

)
Problem: Standard Markov chain Monte Carlo (MCMC)
sampler (Metropolis-Hastings) inefficient for large n or λ.



Efficient MCMC for Sparse Image Reconstruction

Task: Monte Carlo integration by samples from

ppost(u|f) ∝ exp
(
− 1

2‖f −Au‖
2
Σ−1

ε
− λ ‖D(u)‖1

)
Problem: Standard Markov chain Monte Carlo (MCMC)
sampler (Metropolis-Hastings) inefficient for large n or λ.

Contributions:

Development of different Gibbs samplers.

Efficient for high-dim. imaging (n > 106).

F.L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion, Inverse Problems.

F.L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors, Inverse Problems.



Efficient MCMC for Sparse Image Reconstruction

Task: Monte Carlo integration by samples from

ppost(u|f) ∝ exp
(
− 1

2‖f −Au‖
2
Σ−1

ε
− λ ‖D(u)‖1

)
Problem: Standard Markov chain Monte Carlo (MCMC)
sampler (Metropolis-Hastings) inefficient for large n or λ.

Work by Marcelo Pereyra et al.:

Unadjusted Langevin algorithm applied to
Moreau-Yoshida envelopes of posterior energy.

As easy to implement as proximal gradient descent.

Durmus, Moulines, Pereyra, 2016. Efficient Bayesian
computation by proximal Markov chain Monte Carlo: when
Langevin meets Moreau, arXiv:1612.07471.



Point Estimators in Bayesian Inference for Imaging

ûMAP := argmax
u∈Rn

{ ppost(u|f)} vs. ûCM :=

∫
u ppost(u|f) du

State in imaging ∼5 years ago:

CM preferred in theory, inaccessible in practice.

MAP discredited by theory, accessible in practice.
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∫
u ppost(u|f) du

State in imaging ∼5 years ago:

CM preferred in theory, inaccessible in practice.

MAP discredited by theory, accessible in practice.

However:

MAP results looks/performs better or similar to CM.

Gaussian priors: MAP = CM. Funny coincidence?

Theoretical argument has a logical flaw.
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Point Estimators in Bayesian Inference for Imaging

ûMAP := argmax
u∈Rn

{ ppost(u|f)} vs. ûCM :=

∫
u ppost(u|f) du

State in imaging ∼5 years ago:

CM preferred in theory, inaccessible in practice.

MAP discredited by theory, accessible in practice.

Contributions:

Theoretical rehabilitation of MAP.

Key: Bayes cost based on Bregman distances.

Gaussian case consistent in this framework.

Burger & L, 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes
estimators, Inverse Problems, 30(11).

Helin & Burger, 2015. Maximum a posteriori probability estimates
in infinite-dimensional Bayesian inverse problems, Inverse
Problems, 31(8).
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Experimental Data: Limited-Angle CT

Cooperation with Samuli Siltanen, Esa Niemi et al.

Besov and TV prior; non-negativity constraints.

Stochastic noise modeling.

Uncertainty quantification for limited angle CT.

Use the data set for your own work: arXiv:1502.04064)
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Walnut-CT with TV Prior: Full vs. Limited Angle

(a) MAP, full (b) CM, full (c) CStd, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



TV Prior, Non-Negativity Constraints, Limited Angle

(a) CM, uncon (b) CM, non-neg

(c) CStd, uncon (d) CStd, non-neg



However...

(a) CStd, full (b) CStd, limited

What does it really tell me?

Does the uncertainty decrease?!
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Gaussian increment prior:

pprior(u) ∝
∏
i

exp

(
− (ui+1 − ui)2

γ

)
Gaussian variables live on characteristic scale, determined by γ.
Similar amplitudes are likely, sparsity (= outliers) is unlikely.

0 1/3 2/3 1

0

1

 

 

u
†,∞

λ =25
2

λ =50
2

λ =100
2

Felix.Lucka@cwi.nl - Sparse Bayesian Inference & UQ for Inverse Imaging Problems 11



Hierarchical Bayesian Modeling (HBM) of Sparsity

Conditionally Gaussian increment prior:

pprior(u|γ) ∝
∏
i

exp

(
− (ui+1 − ui)2

γi

)
Scale-invariant hyperprior to approximate un-informative γ−1

i prior:

phyper(γi) ∝ γ−(α+1)
i exp

(
− β
γi

)
, inverse gamma distribution
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The Implicit Energy Functional behind HBM

−1 0 1
0

1

 

 

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 |x| x2

Implicit prior is a Student’s t-prior with ν = 2α, θ = β/(2α):

pprior(u) ∝
∏
i

(
1 +

u2
i

νθ

)−ν−1
2

ppost(u|f) ∝ exp

(
− 1

2‖f −Au‖
2
Σ−1

ε
− ν−1

2

∑
i

log

(
1 +

u2
i

νθ

))



Prior Samples

(a) `2 (b) `1 (c) `1/2 (d) Cauchy

pprior(ui) ∝ exp(−|ui|p) vs. pprior(ui) ∝
1

1 + u2
i
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Why HBM? EEG/MEG Source Reconstruction

Aim: Reconstruction of brain activity by non-invasive measurement of
induced electromagnetic fields outside of skull.

source: Wikimedia Commons source: Wikimedia Commons

Notoriously ill-posed problem!
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HBM for EEG/MEG Source Reconstruction

Inversion with log-concave priors (e.g., `1-type) suffers from
systematic depth miss-localization, HBM does not.

HBM shows promising results for focal brain networks with
simulated and real data and EEG-MEG combination.

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents, NeuroImage, 61(4):1364–1382.
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Comparison: Two Approaches to Sparsity

feature `p prior HBM

J (u) ‖u‖pp ν+1
2

∑
log
(

1 + u2

νθ

)
sparsifying parameter p > 0 ν > 0

quadratic limit p = 2 ν →∞
sparse limit p→ 0 ν → 0

limit functional |u|0
∑n
i log (|ui|) if all ui 6= 0,

−∞ else

solutions sparse compressible

differentiable p > 1 always

convex everywhere for p > 1 ‖u‖∞ <
√
νθ

homogeneous yes no

Combine them to get best (worst?!) of both worlds?
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`p-hypermodels with generalized Gamma hyperpriors

pprior(u, γ) ∝ exp

(
−
∑
i

(
|DT

i u|p

γi
+
γri
β
− (rα− 1− 1/p) log(γi)

))
Implicit prior with inverse gamma hyperprior:∏

i

(
1 +
|DT

i u|p

β

)−α−1/p

(a) p = 2 (b) p = 1



`p-Hypermodels & Majorization-Minimization

Posterior with gamma hyperprior (r = 1), p = 1, and α = 2:

ppost(u|f) ∝ exp

(
−1

2
‖f −Au‖22 −

∑
i

(
|DT

i u|
γi

+
γi
β

))

Computational scheme for full-MAP estimation equivalent to
majorization-minimization scheme for `1/2 regularization (Adaptive
Lasso):

u(k) = argmin
u

{
1

2
‖f −Au‖2

Σ−1
ε

+
1√
β

∑
i

|DT
i u|√

|DT
i u|(k−1)

}

Bekhti, L, Salmon, Gramfort, 2017. A hierarchical Bayesian
perspective on majorization-minimization for non-convex sparse
regression: application to M/EEG source imaging, almost submitted.
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Uncertainty Quantification for Non-Convex Sparse Recovery

Severely under-determined problems f = Au:

Many sparse solutions consistent with data!

Log-concave priors erase this ambiguity and yield single result.

HBM posteriors get multi-modal.

Traditional UQ measure do not capture these aspects.

Can we preserve but quantify, structure and visualize ambiguity?
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Mode Analysis with MCMC & Optimization

Generate MCMC chain of posterior samples.

Use every sample as initialization of gradient-based optimization.

Analyse resulting chain of modes.
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Sparse Source Network Analysis for EMEG Auditory Data

all 364 EEG+MEG all 306 MEG 182 MEG+EEG 
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Summary, Outlook & Open Questions

`p-norm and HBM road to sparsity: Neither perfect but (somewhat)
computationally tractable.  spike-and-slab priors?

MAP estimates are proper Bayes estimators, modes are meaningful.

However: Everything beyond point estimation is what’s really
interesting.

Meaningful and interpretable UQ measures for sparse inversion /
imaging that can complement variational approaches?

Does it really make sense?
(over confidence in ill-posed problems, prior domination)
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Thank you for your attention!

Bekhti, L, Salmon, Gramfort, 2017. A hierarchical Bayesian perspective on
majorization-minimization for non-convex sparse regression: application to
M/EEG source imaging, almost submitted.

L, 2016. Fast Gibbs sampling for high-dimensional Bayesian inversion, Inverse
Problems.

L, 2014. Bayesian Inversion in Biomedical Imaging, PhD Thesis, University of
Münster.

Burger, L, 2014. Maximum-A-Posteriori Estimates in Linear Inverse Problems
with Log-concave Priors are Proper Bayes Estimators, Inverse Problems.

L, 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference
in high-dimensional inverse problems using L1-type priors, Inverse Problems.

L, Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents, NeuroImage.
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MAP vs. CM Estimates: The Classical View

A theoretical argument ”decides”the conflict: The Bayes cost formalism.

An estimator is a random variable, as it relies on f and u.

How does it perform on average? Which estimator is ”best”?

 Define a cost function Ψ(u, v).

Bayes cost is the expected cost:

BC(û) =

∫∫
Ψ(u, û(f)) plike(f |u) df pprior(u) du

Bayes estimator ûBC for given Ψ minimizes Bayes cost. Turns out:

ûBC(f) = argmin
û

{∫
Ψ(u, û(f)) ppost(u|f) du

}
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MAP vs. CM Estimates: The Classical View
Main classical arguments pro CM and contra MAP estimates:

CM is Bayes estimator for Ψ(u, û) = ‖u− û‖22 (MSE).

Also the minimum variance estimator.

The mean value is intuitive, it is the ”center of mass”, the known
”average”.

MAP estimate can be seen as an asymptotic Bayes estimator of

Ψε(u, û) =

{
0, if ‖u− û‖∞ 6 ε
1 otherwise,

for ε→ 0 (uniform cost). =⇒ It is not a proper Bayes estimator.

MAP and CM seem theoretically and computationally fundamentally
different =⇒ one should decide.

“A real Bayesian would not use the MAP estimate”

People feel ”ashamed” when they have to compute MAP estimates
(even when their results are good).
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A False Conclusion

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

”MAP estimate can be seen as an asymptotic Bayes estimator of

Ψε(u, û) =

{
0, if ‖u− û‖∞ < ε

1 otherwise,

for ε→ 0.
???=⇒??? It is not a proper Bayes estimator.”

”MAP estimator is asymptotic Bayes estimator for some degenerate Ψ”
;“MAP can’t be Bayes estimator for some proper Ψ” !!!!
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Two New Bayes Cost Functions

Define

(a) ΨLS(u, û) := ‖A(û− u)‖2
Σ−1

ε
+ β‖L(û− u)‖22

(b) ΨBrg(u, û) := ‖A(û− u)‖2
Σ−1

ε
+ λDJ (û, u)

for a regular L and β > 0.

Properties:

Proper, convex cost functions

For J (u) = β/λ‖Lu‖22 (Gaussian case!) we have λDJ (û, u) =
β‖L(û− u)‖22, and ΨLS(u, û) = ΨBrg(u, û)!

Theorems:

(I) The CM estimate is the Bayes estimator for ΨLS(u, û)

(II) The MAP estimate is the Bayes estimator for ΨBrg(u, û)
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Bregman distances

For a proper, convex functional Ψ : Rn −→ R ∪ {∞}, the Bregman
distance Dp

Ψ(f, g) between f, g ∈ Rn for a subgradient p ∈ ∂Ψ(g) is
defined as

Dp
Ψ(f, g) = Ψ(f)−Ψ(g)− 〈p, f − g〉, p ∈ ∂Ψ(g)

0

0

J (x)

J (v) + J 0(v)(x� v)

DJ (u, v) = J (u)� J (v)� J 0(v)(u� v)

DJ (u, v)

u v

(c) J (x) = x2

0

J (x)

Dq
J (u, v) =J (u)� J (v)� q(u� v)

with q 2 @J (v)

vuw

Dp
J (u, v)

J (v) + p(x� v)

J (v) + r(x� v)

Dr
J (w, v)

p, r 2 @J (v) = [�1, 1]

(d) J (x) = |x|

Basically, DΨ(f, g) measures the difference between Ψ and its
linearization in f at another point g
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