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Photoacoustic Imaging: Applications

Light-absorbing structures in soft tissue.

High contrast between blood and water/lipid.

Different wavelengths allow quantitative
spectroscopic examinations.

Sensitive to blood oxygen saturation (SO2).

Use of contrast agents for molecular imaging.

Extremely promising future imaging technique!

sources: Paul Beard, 2011. Biomedical photoacoustic imaging,

Interface Focus. Wikimedia Commons
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Dynamic High Resolution Photoacoustic Tomography

Fabry Pérot (FB) interferometer:

X High spatial resolution

! Nyquist sampling leads to low temporal resolution

 Beat Nyquist for sparse targets by incoherent sampling of each
frame/wavelength t (”compressed sensing”):

f ct = Ctft = Ci(Apt + εt), t = 1, . . . , T

Image reconstruction:
1. f ct −→ ft, ft −→ pt by standard method.
2. f ct −→ pt: standard or new method?
3. F c −→ P : Full spatio-temporal method.



PAT Reconstruction & Numerical Wave Propagation

Variational regularization:

p̂t = argmin
p>0

{
1
2 ‖CtAp− f ct ‖

2
2 + λJ (p)

}
! Iterative first-order methods require implementation of A and A∗.

X k-space pseudospectral time domain method for 3D wave propagation:

B. Treeby and B. Cox, 2010. k-Wave:

MATLAB toolbox for the simulation and

reconstruction of photoacoustic wave fields,

Journal of Biomedical Optics.

X Derivation and discretization of adjoint PAT operator A∗:

Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator
in Photoacoustic Tomography, Inverse Problems 32(11).
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Accelerated 3D PAT via Compressed Sensing

p̂t = argmin
p>0

{
1
2 ‖CtAp− f ct ‖

2
2 + λJ (p)

}
X combination of compressed sensing and

sparsity-constrained image reconstruction

X generic total variation (TV) regularization enhanced by
Bregman iterations

X extensive evaluation with realistic numerical phantom,
experimental and in-vivo data

X significant acceleration with minor loss of quality.

! frame-by-frame reconstruction, only.

Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade,
Zhang, 2016. Accelerated High-Resolution Photoacoustic
Tomography via Compressed Sensing, Physics in Medicine
and Biology 61(24).



Spatio-Temporal Reconstruction (4D Tomography)

Continuous data acquisition

=⇒ tradeoff between spatial and temporal resolution.

Different dynamic models:

Parametric models (shift, stretch, etc.): simple and nice if
applicable.

Structured Low-Rank (functional imaging with static
anatomies/QPAT).

Tracer uptake/wash-in models.

Perfusion models.

Needle guidance

Intra-operative endoscopic imaging.

Joint image reconstruction and motion estimation.
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General Dynamics

p̂t = argmin
p>0

{
1
2 ‖CtAp− f ct ‖

2
2 + λTV (p)

}
, ∀ t = 1, . . . , T

full data sub-sampled data (16x)



Spatio-Temporal Regularization

Non-parametric spatio-temporal regularization: Find p ∈ RN×T as

p̂ = argmin
p>0

{
T∑
t

1

2
‖CtApt − f ct ‖

2
2 + λR(p)

}
,

Lot’s of possibilities, here: Implicit model formulated as joint image and
motion estimation:

(p̂, v̂) = argmin
p>0,v

{
T∑
t

1

2
‖CtApt − f ct ‖

2
2+αJ (pt)+βH(vt)+γM(p, v)

}

M(p, v) enforces motion PDE, e.g., optical flow equation:

∂tp(x, t) + (∇xp(x, t)) v(x, t) = 0

Burger, Dirks, Schönlieb, 2016. A Variational Model for Joint
Motion Estimation and Image Reconstruction, arXiv:1607.03255.



Example: TV-TV-Lp Regularization

∂tp(x, t) + (∇xp(x, t)) v(x, t) = 0

 discretize and penalize deviation:

(p̂, v̂) = argmin
p>0,v

{
T∑
t

1

2
‖CtApt − fct ‖22

+ αTV (pt) + βTV (vt) +
γ

p
‖(pt+1 − pt) + (∇pt) · vt‖p̃p̃

}
proximal-gradient-type scheme:

pk+1 = proxνR

(
pk − νA∗C∗

(
CApk − fc

))
proxνR(q) = argmin

p>0

{
1

2
‖p− q‖22 + νR(p)

}

= argmin
p>0

{
min
v

T∑
t

1

2
‖pt − qt‖22

+ ναTV (pt) + νβTV (vt) +
νγ

p̃
‖(pt+1 − pt) + (∇pt) · vt‖p̃p̃

}



Non-smooth Biconvex Optimization

For p̃ > 1, TV-TV-Lp̃ denoising is a biconvex optimization problem:

min
p>0,v

S(p, v) := min
p>0,v

T∑
t

1

2
‖pt − qt‖22

+ ναTV (pt) + νβTV (vt) +
νγ

p̃
‖(pt+1 − pt) + (∇pt) · vt‖p̃p̃

Alternating optimization:

pk+1 = argmin
p
S(p, vk) (TV-transport constr. denoising)

vk+1 = argmin
v
S(pk+1, v) (TV constr. optical flow estimation)

! Both problems are convex but non-smooth.

! Need to ensure energy decrease.
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Non-smooth Biconvex Optimization

Alternating optimization:

pk+1 = argmin
p
S(p, vk) (TV-transport constr. denoising)

vk+1 = argmin
V

S(pk+1, v) (TV constr. optical flow estimation)

Primal-dual hybrid gradient for both: Too slow convergence in 3D.

Alternating directions method of multipliers (ADMM):

! More difficult to parameterize (to ensure monotone energy).

! Badly conditioned, large-scale least-squares problems.

! Crucial: Choice of iterative solver, preconditioning and stop criterion.

X Overrelaxed ADMM with step size adaptation and CG solver for p.

X Overrelaxed ADMM with AMG-CG solver for v (frame-by-frame).

X Warm-start wherever possible.

Chambolle, Pock, 2016. An introduction to continuous optimization for imaging,
Acta Numerica.



A 2D Example: Frame-by-Frame Least Squares

p̂t = argmin
p>0

{
‖CtAp− f ct ‖

2
2

}
∀ t = 1, . . . , T

phantom full data sub-sampled (25x)
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A 2D Example: Frame-by-Frame Total Variation

p̂t = argmin
p>0

{
‖CtAp− f ct ‖

2
2 + λTV (p)

}
∀ t = 1, . . . , T

phantom full data sub-sampled (25x)
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A 2D Example: TV-TV-L2

(p̂, v̂) = argmin
p>0,v

{
1

2

T∑
t

‖CtApt − f ct ‖
2
2

+ αTV (pt) + βTV (vt) +
γ

2
‖(pt+1 − pt) +∇pt · vt‖22

}
α = β = λTV , γ = 1

phantom full data sub-sampled (25x)
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A 2D Example: TV-TV-L2

(p̂, v̂) = argmin
p>0,v

{
1

2

T∑
t

‖CtApt − f ct ‖
2
2

+ αTV (pt) + βTV (vt) +
γ

2
‖(pt+1 − pt) +∇pt · vt‖22

}
α = β = λTV , γ = 0.1

phantom full data sub-sampled (25x)
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A 2D Example: Motion Estimation with TV-TV-L2

phantom full data sub-sampled (25x)



Artificially Sub-Sampled 3D Stop-Motion Data

X maxIP

Y maxIP

Z maxIP

X slice

full data, TV-FbF 16x, TV-FbF 16x, TVTVL2, α, β = λTV , γ = 0.1



Artificially Sub-Sampled 3D Stop-Motion Data

full data, TVTVL2 16x, TVTVL2

u - X slice

u - Z slice

v − v̄ - X slice

v − v̄ - Z slice
α, β = λTV , γ = 0.1



Real Sub-Sampled Dynamic 3D Data (8 Beam Scanner)

sub-average over 8 frames

TV-FbF TVTVL2, α = β = λTV , γ = 0.1
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In-Vivo Data: Work in Progress

human finger under various
conditions (movement,
arterial occulsion, thermal
stimuli)
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X-Ray Tomography: Interior Information from Projections

X-rays (high-energy photons) get attenuated by matter

3D attenuation image from of 2D projections for different angles
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FleX-ray Scanner Imaging Lab

custom-made, fully-automated CT scanner
flexible 10 motors, individually programmable
linked to large-scale computing hardware
real-time adaptive 3D imaging
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Dynamic CT (4D) in the FleX-ray Scanner

120 projections per rotation → each projection averaged over 3◦.

40ms exposure per projection → 4.8s per rotation.
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Summary

Photoacoustic Tomography
Imaging with laser-generated ultrasound (”hybrid imaging”)
High contrast for light-absorbing structures in soft tissue.

Challenges of fast, high resolution 4D PAT:
Nyquist requires several thousand detection points  slow.
High computational load.

Acceleration through sub-sampling:
Exploit low spatio-temporal complexity to beat Nyquist.
Acceleration by sub-sampling the incident wave field to maximize
non-redundancy of data.
Sparse, spatio-temporal variational regularization: promising results,
joint estimation of dynamic parameters?

Dynamic X-Ray Tomography:
Challenging sub-sampling scheme.
More computational results next time!
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Thank you for your attention!

L, Huynh, Betcke, Zhang, Beard, Cox, Arridge, 2018. Enhancing Compressed
Sensing Photoacoustic Tomography by Simultaneous Motion Estimation,
arXiv:1802.05184.

Huynh, L, Zhang, Betcke, Arridge, Beard, Cox, 2017. Sub-sampled Fabry-Perot
photoacoustic scanner for fast 3D imaging, Proc. SPIE 2017.

Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang, 2016. Accelerated
High-Resolution Photoacoustic Tomography via Compressed Sensing, Physics in
Medicine and Biology 61(24).

Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator in
Photoacoustic Tomography, Inverse Problems 32(11).

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla

K40 GPU used for this research.
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PDHG & ADMM in 2D & 3D
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Preconditioning of the Least Squares Problem in ADMM

0 10 20 30 40 50 60 70 80
-3

-2.5

-2

-1.5

-1

-0.5

0

CG
IC(0)-CG
ICT-CG
MINRES
IC(0)-MINRES
ICT-MINRES
AMG-CG

0 20 40 60 80 100 120 140 160 180 200
-14

-12

-10

-8

-6

-4

-2

0

ICT-CG
ICT-MINRES
AMG-CG

Felix.Lucka@cwi.nl - Variational Models for Dynamic Tomography 34


	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	anm5: 
	anm6: 
	anm7: 
	anm8: 
	anm9: 
	anm10: 
	anm11: 
	anm12: 
	anm13: 
	anm14: 
	anm15: 
	anm16: 
	anm17: 
	anm18: 
	anm19: 
	anm20: 
	anm21: 
	anm22: 
	anm23: 
	anm24: 
	anm25: 
	anm26: 
	anm27: 
	anm28: 
	anm29: 
	anm30: 
	anm31: 


