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Bayesian Inference for Inverse Problems

Ill-posed inverse problems with additive Gaussian noise:
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Probabilistic representation allows for a rigorous quantification of the
solution’s uncertainties.
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and ridge regression:

oy =argmin{3f —Aul3+X|D7ull1}
u

(e.g. total variation, wavelet shrinkage, LASSO,...)
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and ridge regression:

oy =argmin{3f —Aul3+X|D7ull1}
u
(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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Outline

@ Introduction: Sparse Bayesian Inversion
@ Sparsity by £, Priors
@ Hierarchical Bayesian Modeling

@ Discussion, Conclusion and Outlook

@ Appendix
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The ¢, Approach to Sparse Bayesian Inversion

Porior (1) X exp (4 ||DTu||5) . Prost(u]F) o exp (—%Hf — Aul - ||DTu||5)

Decrease p from 2 to 0 and stop at p = 1 for convenience.



The ¢, Approach to Sparse Bayesian Inversion &

Porior (1) X exp (4 ||DTu||5) . Prost(u]F) o exp (—%Hf — Aul - ||DTu||g)

Decrease p from 2 to 0 and stop at p = 1 for convenience.
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Bayesian Inference with ¢; Priors

Poost (ulf) ox exp (=31 = AulZ_ =AD" ull)

Aims: Bayesian inversion in high dimensions (n — o0).

Priors: Simple ¢;, total variation (TV), Besov space priors.

Starting points: ‘ \

@ Lassas & Siltanen, 2004. Can one use total variation prior '
for edge-preserving Bayesian inversion? Inverse Problems, 20.  dfeme=s= b

@ Lassas, Saksman & Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors. Inverse Problems
and Imaging, 3(1).

@ Kolehmainen, Lassas, Niinimdki & Siltanen, 2012.
Sparsity-promoting Bayesian inversion. Inverse Problems,
28(2).




Efficient MCMC Techniques for ¢; Priors

Task: Monte Carlo integration by samples from

Poost (u[f) o< exp (—3[1f = AulZ_s = X[ DTul)

Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or A.

Contributions:
» Development of explicit single component Gibbs sampler.
» Tedious implementation for different scenarios.
» Still efficient in high dimensions (n > 10°).
» Detailed evaluation and comparison to MH.

@ L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
LI-type priors. Inverse Problems, 28(12):125012.
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New Theoretical Ideas for an Old Bayesian Debate &

igpp 1= argmax { ppost(U|f)} vs.  ficw ::/u Ppost (u|f) du
ueRn

> CM preferred in theory, dismissed in practice.
» MAP discredited by theory, chosen in practice.




New Theoretical Ideas for an Old Bayesian Debate

igpp 1= argmax { ppost(U|f)} vs.  ficw ::/u Ppost (u|f) du
ueR”

> CM preferred in theory, dismissed in practice.
» MAP discredited by theory, chosen in practice.

However:
> MAP results looks/performs better or similar to CM.
» Gaussian priors: MAP = CM. Funny coincidence?
» Theoretical argument has a logical flaw.




New Theoretical Ideas for an Old Bayesian Debate

Upe :=argmax { ppost(u|f)} vs.  lew ::/u Ppost (u|f) du
ueR" .

> CM preferred in theory, dismissed in practice.
» MAP discredited by theory, chosen in practice.

Contributions:
» Theoretical rehabilitation of MAP.
» Key: Bayes cost functions based on Bregman distances.

» Gaussian case consistent in this framework.

@ Burger & L, 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes
estimators, Inverse Problems, 30(11):114004.

@ Helin & Burger, 2015. Maximum a posteriori probability f \ "o
estimates in infinite-dimensional Bayesian inverse problems, ] ‘
Inverse Problems, 31(8) ) [




Recent Generalization: Slice-Within-Gibbs Sampling

pprior(u) X exp (_)‘HDTL’Hl)

Limitations:
» D must be diagonalizable (synthesis priors):
> (9-prior: exp (=AD" ul|9)? TV in 2D/3D?
» Non-negativity or other hard-constraints?
Contributions:

» Replace explicit by generalized slice sampling.

> Implementation & evaluation for most common priors.

@ Neal, 2003. Slice Sampling. Annals of Statistics 31(3)

@ L, 2015. Fast Gibbs sampling for high-dimensional Bayesian
inversion. (in preparation)
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Application to Experimental Data: Walnut-CT &

Cooperation with Samuli Siltanen, Esa Niemi et al.

v

v

Implementation of MCMC methods for Fanbeam-CT.

v

Besov and TV prior; non-negativity constraints.

v

Stochastic noise modeling.

v

Bayesian perspective on limited angle CT.

Use the data set for your own work:
http://www.fips.fi/dataset.php (documentation: arXiv:1502.04064)



Walnut-CT with TV Prior: Full Angle &

(b) MAP, special color scale

(e) CM, special color scale (f) CM of ||Vul|2



Walnut-CT with TV Prior: Full vs. Limited Angle &

(a) MAP, full (b) CM, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



Walnut-CT with TV Prior: Non-Negativity Constraints, Limited Angley

(c) CStd, uncon (d) CStd, non-neg



Outline

@ Introduction: Sparse Bayesian Inversion
@ Sparsity by £, Priors
@ Hierarchical Bayesian Modeling

@ Discussion, Conclusion and Outlook

@ Appendix
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Gaussian increment prior:

pprior(u) X H exp <—M>

» Gaussian variables take values on a characteristic scale, determined

by 7.
» Similar amplitudes are likely, sparsity (= outliers) is unlikely.

uf>
— A =257
— A =50%
— A =100°

0 13 213 1
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Conditionally Gaussian increment prior:
2
Uiyl — Uj
Pprior(u7) o Hexp (—¥>
. 1
1
Scale-invariant hyperprior to approximate un-informative 7,._1 prior:
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The Implicit Energy Functional behind HBM &

[p=1® —p=107—p=107—p=10"p=10"—W o]

N
N

Implicit prior is a Student’s t-prior with v = 2,0 = 3/(2«):

AN
pprior(u) X H (1 + Vlg)

u?
Ppost(u|f) o exp (—%Hf — Au||22;1 -l Z log (1 + y_,0>>
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Hierarchical Bayesian Computation

1 2 ~ (uf +28
Ppost (U, V|f) o exp | =3 [If = Aullz. — Z o + (o +1/2) log(vi)

i
All computational approaches (optimization or sampling) exploit the
conditional structure:

> Fix v and update u by solving n-dim linear problem.

» Fix u and update v by solving n 1-dim non-linear problems.
Major difficulty: Multimodality of posterior.

Heuristic Ful-MAP computation:

» Use MCMC to explore posterior (avoids very sub-optimal local
modes).

» Initialize alternating optimization by local MCMC averages to
compute local modes.

No guarantee for finding highest mode but usually an acceptable result.



Why HBM? EEG/MEG Source Reconstruction

surface
extraction

tetrahedral
meshing

segmentation

brain
anisotropy

>< registration

Notoriously ill-posed problem!



Why HBM? EEG/MEG Source Reconstruction

» Inversion with log-concave priors suffers from systematic depth
miss-localization, HBM does not.

» HBM shows promising results for focal brain networks with
simulated and real data.

@ L., Aydin, Vorwerk, Burger, Wolters, 2013. Hierarchical Fully-Bayesian
Inference for Combined EEG/MEG Source Analysis of Evoked Responses: From
Simulations to Real Data.

BaCl 2013, Geneva.

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Fully-Bayesian Inference for
EEG/MEG combination: Examination of Depth Localization and Source
Separation using Realistic FE Head Models.

Biomag 2012, Paris

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.

Neurolmage, 61(4):1364-1382.
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Summary, Conclusions & Outlook &

Bayesian Modeling:
» Sparsity can be modeled in different ways.
» HBM is an interesting but challenging alternative to £, priors.

» Combine /,-type and hierarchical priors: £,-hypermodels.

Bayesian Computation:
> Elementary MCMC samplers may perform very differently.

» Contrary to common beliefs sample-based Bayesian inversion in high
dimensions (n > 10°) is feasible if tailored samplers are developed.

v

Fast samplers can be used for simulated annealing.

v

Reason for the efficiency of the Gibbs samplers is unclear.

v

Adaptation, parallelization, multimodality, multi-grid.
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Summary, Conclusions & Outlook &

Bayesian Estimation / Uncertainty Quantification

» MAP estimates are proper Bayes estimators.

» But: Everything beyond "MAP or CM?" is far more interesting and
can really complement variational approaches.

» However: Extracting information from posterior samples (data
mining) is a non-trivial (future research) topic.

» Application studies had proof-of-concept character up to now.

» Specific UQ task to explore full potential of the Bayesian approach.
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@ L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Miinster.

@ M. Burger, L., 2014. Maximum a posteriori estimates in linear inverse
problems with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

@ L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian
inference in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference
for the EEG inverse problem using realistic FE head models: Depth
localization and source separation for focal primary currents.
Neurolmage, 61(4):1364-1382.
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Thank you for
your attention!

@ L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Miinster.

@ M. Burger, L., 2014. Maximum a posteriori estimates in linear inverse
problems with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

@ L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian
inference in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference
for the EEG inverse problem using realistic FE head models: Depth
localization and source separation for focal primary currents.
Neurolmage, 61(4):1364-1382.
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Efficient MCMC Techniques for ¢; Priors &

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d)

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h  (h) SC Gibbs, 16h

Deconvolution, simple ¢; prior, n =513 x 513 = 263 169.
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Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

» For A\, = const., n — oo the TV prior diverges.
» CM diverges.
» MAP converges to edge-preserving limit.

uto utoe
—n= 63 || —n= 63|
—n= 255 —n = 255
n= 1023 n = 1023
n= 4095 n = 4095
n = 16383 n = 16383
—n = 65535 —n = 65535

0 13 213 10 1/3 23 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



Verification of Theoretical Predictions by MCMC &

Numerical verification of the discretization dilemma of the TV prior

(Lassas & Siltanen, 2004):
» For A\, = const., n — oo the TV prior diverges.

» CM diverges.
» MAP converges to edge-preserving limit.

whoe ut
—n = 63
—n = 255

n= 1023

n= 4095

n = 16 383
—n = 65535

213

213 13

(a) Zoom into CM estimates (b) MCMC convergence check



Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

» For A\, xv/n+1, n — oo the TV prior converges to a smoothness prior.
» CM converges to smooth limit.
» MAP converges to constant.

oo

il utes 1 ut
—n= 63 —n = 63

—n= 255 —n= 255

n= 1023 n= 1023

n = 4095 n = 4095

n = 16383 n = 16383

—n = 65535 —n = 65535

0 13 2/3 10 13 213 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

» CT using only 45 projection angles and 500 measurement pixel.

m 4: |

real solution data f colormap
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, A =500 CM, n= 642, A =500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, A = 500 CM, n= 1282, A\ = 500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, A = 500 CM, n = 2562, X\ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I.
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Examination of Alternative Priors by MCMC: TV-p

Ppost(U) o exp (—%Hf —A “”2):;1 - A ||DTu||g)

ah wuhes

1 — p=141 — p=14
— p=1.2 7 3 — p=12

— p=1.0 — p=1.0

— p=0.8 — p=0.8

0 o ] Ny
0 1}3 2)3 10 1}3 2)3 1

(c) CM (Gibbs-MCMC) (d) MAP (Simulated Annealing)
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Examination of Besov Space Priors by MCMC &

An {1-type, wavelet-based prior: Pprior (1) o< exp (= AWV T ;)

motivated by:

@ M. Lassas, E. Saksman, S. Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors., Inverse Probl Imaging, 3(1).

@ V. Kolehmainen, M. Lassas, K. Niinimaki, S. Siltanen, 2012.
Sparsity-promoting Bayesian inversion, Inverse Probl, 28(2).

@ K. Hamaldinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimaki, S.
Siltanen, 2013. Sparse Tomography, SIAM J Sci Comput, 35(3).
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