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Bayesian Inference for Inverse Problems

Ill-posed inverse problems with additive Gaussian noise:

f = A(u) + ε

plike(f |u) ∝

exp
(
− 1

2‖f − Au‖2
Σ−1

ε

)
pprior (u) ∝
exp

(
−λ ‖DTu‖2

2

)
ppost(u|f ) ∝

exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖2

2

)
Probabilistic representation allows for a rigorous quantification of the
solution’s uncertainties.



Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and ridge regression:

ûλ = argmin
u

{
1
2‖f − Au‖2

2 + λ‖DTu‖1

}
(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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PhD Thesis ”Bayesian Inversion in Biomedical Imaging”

I Submitted 2014, supervised by Martin
Burger and Carsten H. Wolters.

I Linear inverse problems in biomedical
imaging applications.

I Simulated data scenarios and
experimental CT and EEG/MEG data.

I Sparsity by means of
I `p-norm based priors

I Hierarchical prior modeling

I Focus on Bayesian computation and
application.
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The `p Approach to Sparse Bayesian Inversion
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Decrease p from 2 to 0 and stop at p = 1 for convenience.
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Bayesian Inference with `1 Priors

ppost(u|f ) ∝ exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖1

)

Aims: Bayesian inversion in high dimensions (n→∞).

Priors: Simple `1, total variation (TV), Besov space priors.

Starting points:

Lassas & Siltanen, 2004. Can one use total variation prior
for edge-preserving Bayesian inversion? Inverse Problems, 20.

Lassas, Saksman & Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors. Inverse Problems
and Imaging, 3(1).

Kolehmainen, Lassas, Niinimäki & Siltanen, 2012.
Sparsity-promoting Bayesian inversion. Inverse Problems,
28(2).
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Efficient MCMC Techniques for `1 Priors

Task: Monte Carlo integration by samples from

ppost(u|f ) ∝ exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖1

)
Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or λ.

Contributions:

I Development of explicit single component Gibbs sampler.

I Tedious implementation for different scenarios.

I Still efficient in high dimensions (n > 106).

I Detailed evaluation and comparison to MH.

L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors. Inverse Problems, 28(12):125012.



New Theoretical Ideas for an Old Bayesian Debate

ûMAP := argmax
u∈Rn

{ ppost(u|f )} vs. ûCM :=

∫
u ppost(u|f )du

I CM preferred in theory, dismissed in practice.

I MAP discredited by theory, chosen in practice.
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{ ppost(u|f )} vs. ûCM :=

∫
u ppost(u|f )du

I CM preferred in theory, dismissed in practice.

I MAP discredited by theory, chosen in practice.

However:

I MAP results looks/performs better or similar to CM.

I Gaussian priors: MAP = CM. Funny coincidence?

I Theoretical argument has a logical flaw.
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New Theoretical Ideas for an Old Bayesian Debate

ûMAP := argmax
u∈Rn

{ ppost(u|f )} vs. ûCM :=

∫
u ppost(u|f )du

I CM preferred in theory, dismissed in practice.

I MAP discredited by theory, chosen in practice.

Contributions:

I Theoretical rehabilitation of MAP.

I Key: Bayes cost functions based on Bregman distances.

I Gaussian case consistent in this framework.

Burger & L, 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes
estimators, Inverse Problems, 30(11):114004.

Helin & Burger, 2015. Maximum a posteriori probability
estimates in infinite-dimensional Bayesian inverse problems,
Inverse Problems, 31(8)
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Recent Generalization: Slice-Within-Gibbs Sampling

pprior (u) ∝ exp
(
−λ‖DTu‖1

)
Limitations:

I D must be diagonalizable (synthesis priors):

I `qp-prior: exp
(
−λ‖DTu‖qp

)
? TV in 2D/3D?

I Non-negativity or other hard-constraints?

Contributions:

I Replace explicit by generalized slice sampling.

I Implementation & evaluation for most common priors.

Neal, 2003. Slice Sampling. Annals of Statistics 31(3)

L, 2015. Fast Gibbs sampling for high-dimensional Bayesian
inversion. (in preparation)
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Application to Experimental Data: Walnut-CT

I Cooperation with Samuli Siltanen, Esa Niemi et al.

I Implementation of MCMC methods for Fanbeam-CT.

I Besov and TV prior; non-negativity constraints.

I Stochastic noise modeling.

I Bayesian perspective on limited angle CT.

Use the data set for your own work:
http://www.fips.fi/dataset.php (documentation: arXiv:1502.04064)



Walnut-CT with TV Prior: Full Angle

(a) MAP (b) MAP, special color scale (c) CStd

(d) CM (e) CM, special color scale (f) CM of ‖∇u‖2



Walnut-CT with TV Prior: Full vs. Limited Angle

(a) MAP, full (b) CM, full (c) CStd, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



Walnut-CT with TV Prior: Non-Negativity Constraints, Limited Angle

(a) CM, uncon (b) CM, non-neg

(c) CStd, uncon (d) CStd, non-neg
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Gaussian increment prior:

pprior (u) ∝
∏
i

exp

(
− (ui+1 − ui )

2

γ

)
I Gaussian variables take values on a characteristic scale, determined

by γ.
I Similar amplitudes are likely, sparsity (= outliers) is unlikely.
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Conditionally Gaussian increment prior:

pprior (u|γ) ∝
∏
i

exp

(
− (ui+1 − ui )

2

γi

)
Scale-invariant hyperprior to approximate un-informative γ−1

i prior:

phyper (γi ) ∝ γ−(α+1)
i exp

(
− β
γi

)
, inverse gamma distribution
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The Implicit Energy Functional behind HBM
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Implicit prior is a Student’s t-prior with ν = 2α, θ = β/(2α):

pprior (u) ∝
∏
i

(
1 +

u2
i

νθ

)−ν−1
2

ppost(u|f ) ∝ exp
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− 1

2‖f − Au‖2
Σ−1

ε
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2
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log
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i
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Hierarchical Bayesian Computation

ppost(u, γ|f ) ∝ exp

(
− 1

2‖f − Au‖2
Σ−1

ε
−

n∑
i

(
u2
i + 2β

2γi
+ (α + 1/2) log(γi )

))

All computational approaches (optimization or sampling) exploit the
conditional structure:

I Fix γ and update u by solving n-dim linear problem.

I Fix u and update γ by solving n 1-dim non-linear problems.

Major difficulty: Multimodality of posterior.

Heuristic Full-MAP computation:

I Use MCMC to explore posterior (avoids very sub-optimal local
modes).

I Initialize alternating optimization by local MCMC averages to
compute local modes.

No guarantee for finding highest mode but usually an acceptable result.



Why HBM? EEG/MEG Source Reconstruction
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Notoriously ill-posed problem!



Why HBM? EEG/MEG Source Reconstruction

I Inversion with log-concave priors suffers from systematic depth
miss-localization, HBM does not.

I HBM shows promising results for focal brain networks with
simulated and real data.

L., Aydin, Vorwerk, Burger, Wolters, 2013. Hierarchical Fully-Bayesian
Inference for Combined EEG/MEG Source Analysis of Evoked Responses: From
Simulations to Real Data.
BaCI 2013, Geneva.

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Fully-Bayesian Inference for
EEG/MEG combination: Examination of Depth Localization and Source
Separation using Realistic FE Head Models.
Biomag 2012, Paris

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.
NeuroImage, 61(4):1364–1382.
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Summary, Conclusions & Outlook

Bayesian Modeling:

I Sparsity can be modeled in different ways.

I HBM is an interesting but challenging alternative to `p priors.

I Combine `p-type and hierarchical priors: `p-hypermodels.

Bayesian Computation:

I Elementary MCMC samplers may perform very differently.

I Contrary to common beliefs sample-based Bayesian inversion in high
dimensions (n > 106) is feasible if tailored samplers are developed.

I Fast samplers can be used for simulated annealing.

I Reason for the efficiency of the Gibbs samplers is unclear.

I Adaptation, parallelization, multimodality, multi-grid.
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Summary, Conclusions & Outlook

Bayesian Estimation / Uncertainty Quantification

I MAP estimates are proper Bayes estimators.

I But: Everything beyond ”MAP or CM?” is far more interesting and
can really complement variational approaches.

I However: Extracting information from posterior samples (data
mining) is a non-trivial (future research) topic.

I Application studies had proof-of-concept character up to now.

I Specific UQ task to explore full potential of the Bayesian approach.
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Thank you for
your attention!

L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Münster.

M. Burger, L., 2014. Maximum a posteriori estimates in linear inverse
problems with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian
inference in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference
for the EEG inverse problem using realistic FE head models: Depth
localization and source separation for focal primary currents.
NeuroImage, 61(4):1364–1382.
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Efficient MCMC Techniques for `1 Priors

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d) MH-Iso, 16h

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h (h) SC Gibbs, 16h

Deconvolution, simple `1 prior, n = 513× 513 = 263 169.
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Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

I For λn = const., n −→∞ the TV prior diverges.

I CM diverges.

I MAP converges to edge-preserving limit.

0 1/3 2/3 1

0

1

 

 

u
†,∞

n = 63

n = 255

n = 1 023

n = 4 095

n = 16 383

n = 65 535

(a) CM by our Gibbs Sampler
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I For λn = const., n −→∞ the TV prior diverges.
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Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

I For λn ∝
√

n + 1, n −→∞ the TV prior converges to a smoothness prior.

I CM converges to smooth limit.

I MAP converges to constant.
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

I CT using only 45 projection angles and 500 measurement pixel.

real solution data f colormap
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, λ = 500 CM, n = 642, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, λ = 500 CM, n = 1282, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, λ = 500 CM, n = 2562, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Examination of Alternative Priors by MCMC: TV-p

ppost(u) ∝ exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖pp

)

0 1/3 2/3 1

0

1

 

 

u
†,∞

p =1.4

p =1.2

p =1.0

p =0.8

(c) CM (Gibbs-MCMC)
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(d) MAP (Simulated Annealing)
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Examination of Besov Space Priors by MCMC

An `1-type, wavelet-based prior: pprior (u) ∝ exp
(
−λ‖WV Tu‖1

)
motivated by:

M. Lassas, E. Saksman, S. Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors., Inverse Probl Imaging, 3(1).

V. Kolehmainen, M. Lassas, K. Niinimäki, S. Siltanen, 2012.
Sparsity-promoting Bayesian inversion, Inverse Probl, 28(2).

K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki, S.
Siltanen, 2013. Sparse Tomography, SIAM J Sci Comput, 35(3).
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