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Quantitative Photoacoustic Breast Imaging

• hybrid imaging: ”light in, sound out”

• non-ionizing, near-infrared radiation

• quantitative images of optical properties

• novel diagnostic information



Photoacoustic Imaging: Spectral Properties
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(from Beard P, 2011)

• different wavelengths allow quantitative spectroscopic examinations.

• gap between oxygenated and deoxygenated blood.

• use of contrast agents for molecular imaging.



Quantitative Ultrasonic Breast Imaging

• ”sound in, sound out”

• different from conventional US but as safe

• quantitative images of acoustic properties

• novel diagnostic information



Partners in H2020 Project

Aim: novel diagnostic information from high resolution maps of

optical and acoustic properties



Our Contributions

simulation studies for

• ultrasonic transducer specification

• light excitation design

• sensing pattern design

• measurement protocol design

reconstruction algorithm design:

• accuracy vs. computational time/resources/complexity

• scanner modelling

• assist high performance computing implementation

assist phantom & calibration design

process data, refine measurement procedures
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Mathematical Modelling (simplified)

Quantitative Photoacoustic Tomography (QPAT)

radiative transfer equation (RTE) + acoustic wave equation

(v · ∇+ µa(x) + µs(x))φ(x , v) = q(x , v) + µs(x)

∫
Θ(v , v ′)φ(x , v ′)dv ′,

pPA(x , t = 0) = p0 := Γ(x)µa(x)

∫
φ(x , v)dv , ∂tp

PA(x , t = 0) = 0

(c(x)−2∂2t −∆)pPA(x , t) = 0, f PA = MpPA

Ultrasound Tomography (UST)

(c(x)−2∂2t−∆)pUSi (x , t) = si (x , t), f USi = Mip
US
i , i = 1, . . . , ns

Step-by-step inversion

1. f US → c : acoustic parameter identification from boundary data.

2. f PA → p0: acoustic initial value problem with boundary data.

3. p0 → µa: optical parameter identification from internal data.



Reconstruction of Initial Photoacoustic Pressure

(c(x)−2∂2t −∆)pPA(x , t) = 0, pPA(x , t = 0) = p0, f PA = MpPA

f PA = MAp0

p̂0 = argmin
p0∈C

∥∥MAp0 − f PA
∥∥2
W

+R(p0)

X linear inverse problem

X variational approach

X first order optimization with early stopping

! model acoustic properties, model discrepancies

! model /calibrate piezoelectric sensor properties: sensitivity, impulse

response, angular sensitivity, ...

! parameter choices, image artifacts,...

! numerical wave simulations: broadband up to > 1.5MHz, 6 0.5mm



Acoustic Wave Propagation: Numerical Solution

• Direct methods, such as finite-difference, pseudospectral,

finite/spectral element, discontinous Galerkin.

• Integral equation methods, e.g. boundary element

• Asymptotic methods, e.g., geometrical optics, Gaussian beams

k-Wave: k-space pseudospectral method solving the underlying

system of first order conservation laws.

• Compute spatial derivatives in Fourier space: 3D FFTs.

• Parallel/GPU computing leads to massive speed-ups.

• Modify finite temporal differences by k-space operator and

use staggered grids for accuracy and robustness.

• Perfectly matched layer to simulate free-space propagation.

B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox

for the simulation and reconstruction of photoacoustic wave

fields, Journal of Biomedical Optics.
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Healthy volunteer, 797nm, baseline

p̂0 = argminp0>0

∥∥MAp0 − f PA
∥∥2
W
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Healthy volunteer, 797nm, add impulse response

p̂0 = argminp0>0
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Healthy volunteer, 797nm, add spatial response

p̂0 = argminp0>0

∥∥MAp0 − f PA
∥∥2
W
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Healthy volunteer, 797nm, add sensitivity

p̂0 = argminp0>0

∥∥MAp0 − f PA
∥∥2
W
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Healthy volunteer, 797nm, add sampling density

p̂0 = argminp0>0
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Healthy volunteer, 797nm, increase resolution/bandwidth

p̂0 = argminp0>0

∥∥MAp0 − f PA
∥∥2
W
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Healthy volunteer, 720nm

p0 = Γ(x)µa(x , λ) Φ(x , λ, µa)



Healthy volunteer, 890nm

p0 = Γ(x)µa(x , λ) Φ(x , λ, µa)



Spectral dimension: ratio images 890nm / 720nm

p0 = Γ(x)µa(x , λ) Φ(x , λ, µa)

initial pressure corrected with background fluence, thresholded by intensity and

only structures 1-20mm are shown; shown is logarithm of ratio; blue = relative

decrease (ratio < 1), white = no change (ratio = 1), red = relative increase

(ratio > 1)



Optical & Spectral Inversion: Overview

c µa

µs

�

�

H p0 f

q

• mapping from c to (µa, µs , Γ): spectra?

• q: light source properties?

• mapping from (µa, µs , q) to Φ: non-linear.
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The RTE and Toast++

Radiative transfer equation

(v · ∇+ µa(x) + µs(x))φ(x , v) = q(x , v) + µs(x)

∫
Θ(v , v ′)φ(x , v ′)dv ′

Φ(x) =

∫
φ(x , v)dv , ! (x , v) ∈ R5  direct FEM infeasible.

Diffusion approximation

(µa(x)−∇ · κ(x)∇) Φ(x) =

∫
q(x , v)dv , κ =

1

ν(µa + µs(1− g))

source modelling? diffusivity matching?

Schweiger, Arridge, 2014. The Toast++ software suite for forward and

inverse modeling in optical tomography, Journal of Biomedical Optics.

Macdonald, Arridge, Powell, 2020. Efficient inversion strategies for

estimating optical properties with Monte Carlo radiative transport models,

Journal of Biomedical Optics.



Model Based Inversion

c µa

µs

�

�

H p0 f

q

ĉ = argmin
c∈C

Nλ∑
λ=1

∫
ROI

(
precon0,λ − p0,λ(c)

)2
dx

• solve via iterative first order method (L-BFGS)

• derivatives of Φ(µa, µs) via adjoint method: two solves of light

model per iteration (per wavelength).

• grid/mesh interpolation

Malone, Powell, Cox, Arridge, 2015. Reconstruction-classification

method for quantitative photoacoustic tomography, JBO.



We Have Done This Before?

• well-controlled laboratory experiment

• full characterization of optical, acoustic and thermoelastic properties

of phantom (sO2 analogue)

• examined sensitivities, computational aspects, etc.

• promising results but a lot to improve

Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.

Three-dimensional photoacoustic imaging and inversion for accurate

quantification of chromophore distributions, Proc. SPIE 2017.



UST Reconstruction Approaches

(c(x)−2∂2t −∆)pUSi (x , t) = si (x , t), f USi = Mip
US
i i = 1, . . . , nsrc

Travel time tomography: geometrical optics approximation.

X robust & computationally efficient

! valid for high frequencies (attenuation!), low res, lots of data

Full waveform inversion (FWI): fit full wave model to all data.

X high res from little data, transducer modelling, constraints

! many wave simulations, complex numerical optimization

• low TRL but already used in 2D systems

Javaherian, L, Cox, 2020. Refraction-corrected ray-based inversion for

three-dimensional ultrasound tomography of the breast, Inverse Problems.



Time Domain Full Waveform Inversion

F (c)pi := (c−2∂2t −∆)pi = si , fi = Mi pi , i = 1, . . . , nsrc

min
c∈C

nsrc∑
i

D
(
fi (c), f δi

)
s.t. fi (c) = MiF

−1(c)si

gradient for first-order optimization via adjoint state method:

∇cD
(
f (c), f δ

)
= 2

∫ T

0

1

c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t) ,

where (c−2∂2t −∆)q∗ = s∗, s∗(x , t) is time-reversed data discrepancy

→ two wave simulations for one gradient

Starting point in 2D:

Pérez-Liva, Herraiz, Ud́ıas, Miller, Cox, Treeby 2017. Time domain

reconstruction of sound speed and attenuation in ultrasound computed

tomography using full wave inversion, JASA.



3D Time Domain FWI for Breast UST

min
c∈C

nsrc∑
i

D
(
MiF

−1(c)si , f
δ
i

)
∇cD

(
f (c), f δ

)
= 2

∫ T

0

1

c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t)

Challenges and solutions for 3D:

! 2 x nsrc wave simulations per gradient

−→ stochastic quasi-newton optimization (SL-BFGS)

! computationally & stochastically efficient gradient estimator

−→ source encoding for time-invariant systems

! memory requirements of gradient computation

−→ time-reversal based gradient computation

! slow convergence and local minima

−→ coarse-to-fine multigrid schemes

! computational resources

−→ runs on single GPU, can utilize multiple GPUs
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3D FWI: Setup

• color range 1435-1665 m/s

• 3D breast phantom at 0.5mm resolution, 1024 sources and receivers

• 442× 442× 222 voxel, 3912 time steps

Yang Lou et al. Generation of anatomically realistic numerical phantoms

for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/

https://anastasio.wustl.edu/downloadable-contents/oa-breast/


Starting point in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• single grid

• SGD

• normal single source gradient estimator



3D FWI in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 4 GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 16 GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



Summary

• novel diagnostic information from optical and acoustic properties

• 3D, high res, quantitative, deep into the breast

• 5 years of design, specification, component improvement

• patient study under way

• three large-scale inverse problems

• linear and non-linear

• wave equation and photon transport

• model calibrations, approximations

• integration into clinical trajectories?

• computations are significant bottleneck
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Thank you for your attention!

L, Pérez-Liva, Treeby, Cox, 2021. High Resolution 3D Ultrasonic Breast

Imaging by Time-Domain Full Waveform Inversion, arXiv:2102.00755.

Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.

Three-dimensional photoacoustic imaging and inversion for accurate

quantification of chromophore distributions, Proc. SPIE 2017.
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