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Quantitative Photoacoustic Breast Imaging

e hybrid imaging: "light in, sound out”
e non-ionizing, near-infrared radiation
e quantitative images of optical properties

e novel diagnostic information

PHOTOACOUSTIC IMAGING

photoacoustic excitation photoacoustic detection
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Photoacoustic Imaging: Spectral Properties
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e different wavelengths allow quantitative spectroscopic examinations.
e gap between oxygenated and deoxygenated blood.

e use of contrast agents for molecular imaging.



Quantitative Ultrasonic Breast Imaging

e "sound in, sound out”

different from conventional US but as safe

quantitative images of acoustic properties

novel diagnostic information

LASER-INDUCED ULTRASOUND IMAGING

laser-induced ultrasound ultrasound detection
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Our Contributions

simulation studies for

e ultrasonic transducer specification
e light excitation design
e sensing pattern design

e measurement protocol design
reconstruction algorithm design:

e accuracy vs. computational time/resources/complexity
e scanner modelling

e assist high performance computing implementation

assist phantom & calibration design

process data, refine measurement procedures
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Mathematical Modelling (simplified)

Quantitative Photoacoustic Tomography (QPAT)
radiative transfer equation (RTE) + acoustic wave equation

(v ¥ a0 + 1)) 6 ) = ) + 1) [ (v V) )
PAx,t = 0) = poi=T(hs() [ o). Bup™ (it =0) =0
(c(x) 202 — A)pPA(x, t) = 0, FPA — MpPA
Ultrasound Tomography (UST)

(C(X)72657A)pius(xa t) = S,'(X, t)a U5 = Mip'Usa i=1...,n

1 1

Step-by-step inversion

1. fUS — c: acoustic parameter identification from boundary data.
2. fPA — po: acoustic initial value problem with boundary data.

3. po — pa: optical parameter identification from internal data.



Reconstruction of Initial Photoacoustic Pressure

(c(x)720? = A)pPA(x,t) =0, pP(x,t =0)=py, 7= Mp™
fPA = MApo

po = argmin ||MAp — fPAHf,V + R(po)
poeC

v/ linear inverse problem
v variational approach
v first order optimization with early stopping
I model acoustic properties, model discrepancies

I model /calibrate piezoelectric sensor properties: sensitivity, impulse
response, angular sensitivity, ...

I parameter choices, image artifacts,...

I numerical wave simulations: broadband up to > 1.5MHz, < 0.5mm



Acoustic Wave Propagation: Numerical Solution

e Direct methods, such as finite-difference, pseudospectral,
finite/spectral element, discontinous Galerkin.

¢ Integral equation methods, e.g. boundary element

e Asymptotic methods, e.g., geometrical optics, Gaussian beams



Acoustic Wave Propagation: Numerical Solution

e Direct methods, such as finite-difference, pseudospectral,
finite/spectral element, discontinous Galerkin.

e Integral wave equation methods, e.g. boundary element.
e Asymptotic methods, e.g., geometrical optics, Gaussian beams.

k-Wave: k-space pseudospectral method solving the underlying
system of first order conservation laws.

e €

e Compute spatial derivatives in Fourier space: 3D FFTs.

e Parallel/GPU computing leads to massive speed-ups.

Modify finite temporal differences by k-space operator and
use staggered grids for accuracy and robustness.

Perfectly matched layer to simulate free-space propagation.

>

ﬁ B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox NVIDIA
for the simulation and reconstruction of photoacoustic wave )
fields, Journal of Biomedical Optics.



Healthy volunteer, 797nm, baseline

Po = argmin, HMApo — fPAHiV
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Healthy volunteer, 797nm, add impulse response

Po = argmin, HMApo — fPAHiV
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Healthy volunteer, 797nm, add spatial response

Po = argmin, HMApo — fPAHiV
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Healthy volunteer, 797nm, add sensitivity

Po = argmin, HMApo — fPAHiV
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Healthy volunteer, 797nm, add sampling density

Po = argmin, HMApo — fPAHiV
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Healthy volunteer, 797nm, increase resolution/bandwidth

Po = argmin, HMApo — fPAHiV
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Healthy volunteer, 720nm




Healthy volunteer, 890nm




Spectral dimension: ratio images 890nm / 720nm

po = F(x) pa(x, A) D(x, A, pa)

initial pressure corrected with background fluence, thresholded by intensity and
only structures 1-20mm are shown; shown is logarithm of ratio; blue = relative
decrease (ratio < 1), white = no change (ratio = 1), red = relative increase

(ratio > 1)




Optical & Spectral Inversion: Overview

< H*ﬁ)qpo—hf
r

e mapping from ¢ to (pa, us,I): spectra?

e g: light source properties?

e mapping from (ua, tis, g) to ®: non-linear.
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The RTE and Toast++4

Radiative transfer equation

(v ¥ a0 + 1)) 63 ) = ) + 1) [ (V) V)
d(x) = /¢(X, v)dv, I (x,v) € R® ~ direct FEM infeasible.
Diffusion approximation

1
(kalo) =V #()V) 0x) = /q(X’ D T - 9)

source modelling? diffusivity matching?

@ Schweiger, Arridge, 2014. The Toast++ software suite for forward and

inverse modeling in optical tomography, Journal of Biomedical Optics.

@ Macdonald, Arridge, Powell, 2020. Efficient inversion strategies for
estimating optical properties with Monte Carlo radiative transport models,

Journal of Biomedical Optics.



Model Based Inversion

~
SNt

e—argmind [ (p5 — pua(c))” ox

e solve via iterative first order method (L-BFGS)

e derivatives of ®(u,, ps) via adjoint method: two solves of light
model per iteration (per wavelength).

e grid/mesh interpolation

@ Malone, Powell, Cox, Arridge, 2015. Reconstruction-classification
method for quantitative photoacoustic tomography, JBO.



We Have Done This Before?

e well-controlled laboratory experiment

o full characterization of optical, acoustic and thermoelastic properties
of phantom (sO, analogue)

e examined sensitivities, computational aspects, etc.
e promising results but a lot to improve
@ Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.

Three-dimensional photoacoustic imaging and inversion for accurate

quantification of chromophore distributions, Proc. SPIE 2017.



UST Reconstruction Approaches

(C(X)72a? - A)p'US(Xa t) = Si(Xv t): fiUS = /\/,ipiuS I=1,...,Ngc

1

Travel time tomography: geometrical optics approximation.
v~ robust & computationally efficient
I valid for high frequencies (attenuation!), low res, lots of data
Full waveform inversion (FWI): fit full wave model to all data.
v high res from little data, transducer modelling, constraints
I many wave simulations, complex numerical optimization
o low TRL but already used in 2D systems

@ Javaherian, L, Cox, 2020. Refraction-corrected ray-based inversion for

three-dimensional ultrasound tomography of the breast, Inverse Problems.



Time Domain Full Waveform Inversion

F(C)p/ = (C_Zaf_A)pi:siv f;: Mipi7 i:17~-~7nsrc
N . X 1 — M-F1 .
rcngngD (fi(e), £°) s.t. fi(c) = MiF~Y(c)si
gradient for first-order optimization via adjoint state method:

T 25(x
V.D (f(c)vfé) = 2/0 c(>1()3 (ag(tz,t)) qa(xt)

where (c7202 — A)g* = s*, s*(x, t) is time-reversed data discrepancy

— two wave simulations for one gradient
Starting point in 2D:

@ Pérez-Liva, Herraiz, Udias, Miller, Cox, Treeby 2017. Time domain
reconstruction of sound speed and attenuation in ultrasound computed

tomography using full wave inversion, JASA.



3D Time Domain FWI for Breast UST

"STC

min > D (MiF~(c)si, )

Challenges and solutions for 3D:

I 2 x ng, wave simulations per gradient

I computationally & stochastically efficient gradient estimator
I memory requirements of gradient computation

I slow convergence and local minima

I computational resources



3D Time Domain FWI for Breast UST

"STC
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Challenges and solutions for 3D:

I 2 x ng, wave simulations per gradient

— stochastic quasi-newton optimization (SL-BFGS)
I computationally & stochastically efficient gradient estimator
I memory requirements of gradient computation

I slow convergence and local minima

I computational resources
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I memory requirements of gradient computation

I slow convergence and local minima

I computational resources



3D Time Domain FWI for Breast UST
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I 2 x ng, wave simulations per gradient
— stochastic quasi-newton optimization (SL-BFGS)

I computationally & stochastically efficient gradient estimator
— source encoding for time-invariant systems

I memory requirements of gradient computation
— time-reversal based gradient computation

I slow convergence and local minima
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I computationally & stochastically efficient gradient estimator
— source encoding for time-invariant systems

I memory requirements of gradient computation
— time-reversal based gradient computation

I slow convergence and local minima
— coarse-to-fine multigrid schemes

I computational resources



3D Time Domain FWI for Breast UST

"src

min > D (MiF~(c)si, )

Challenges and solutions for 3D:

I 2 x ng, wave simulations per gradient
— stochastic quasi-newton optimization (SL-BFGS)

I computationally & stochastically efficient gradient estimator
— source encoding for time-invariant systems

I memory requirements of gradient computation
— time-reversal based gradient computation

I slow convergence and local minima
— coarse-to-fine multigrid schemes

I computational resources
— runs on single GPU, can utilize multiple GPUs



3D FWI: Setup

e
- : ‘

e 3D breast phantom at 0.5mm resolution, 1024 sources and receivers
e 442 x 442 x 222 voxel, 3912 time steps

e color range 1435-1665 m/s

@ Yang Lou et al. Generation of anatomically realistic numerical phantoms
for photoacoustic and ultrasonic breast imaging, JBO, 2017.


https://anastasio.wustl.edu/downloadable-contents/oa-breast/

Starting point in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s
e single grid
e SGD

e normal single source gradient estimator



3D FWI in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

e multi-grid with 3 level, coarsening factor 2
e SL-BFGS, slowness transform, prog. iter averaging

e time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 4 GPU

color range 1435 to 1665 m/s

color range -50 to +50 m/s
e multi-grid with 3 level, coarsening factor 2

e SL-BFGS, slowness transform, prog. iter averaging

e time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 16 GPU

color range 1435 to 1665 m/s

i

color range -50 to +50 m/s

e multi-grid with 3 level, coarsening factor 2
e SL-BFGS, slowness transform, prog. iter averaging

e time-reversal based source encoding gradient estimator



e novel diagnostic information from optical and acoustic properties
e 3D, high res, quantitative, deep into the breast

e 5 years of design, specification, component improvement

e patient study under way

e three large-scale inverse problems

e linear and non-linear

e wave equation and photon transport

e model calibrations, approximations

e integration into clinical trajectories?

e computations are significant bottleneck
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@ L, Pérez-Liva, Treeby, Cox, 2021. High Resolution 3D Ultrasonic Breast
Imaging by Time-Domain Full Waveform Inversion, arXiv:2102.00755.

@ Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.
Three-dimensional photoacoustic imaging and inversion for accurate

quantification of chromophore distributions, Proc. SPIE 2017.

PrOToNICS?! —E PSRC @ «2
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Research Council
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Thank you for your attention!

@ L, Pérez-Liva, Treeby, Cox, 2021. High Resolution 3D Ultrasonic Breast
Imaging by Time-Domain Full Waveform Inversion, arXiv:2102.00755.

@ Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.
Three-dimensional photoacoustic imaging and inversion for accurate

quantification of chromophore distributions, Proc. SPIE 2017.
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