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Bayesian Inference for Inverse Problems

Noisy, ill-posed inverse problems:

f = N (A(u), ε)

Example: f = Au + ε

plike(f |u) ∝

exp
(
− 1

2‖f − Au‖2
Σ−1

ε

)
pprior (u) ∝
exp

(
−λ ‖DTu‖2

2

)
ppost(u|f ) ∝

exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖2

2

)
Probabilistic representation allows for a rigorous quantification of the
solution’s uncertainties.



Increased Interest in Bayesian Inversion

Inverse problems in the Bayesian framework
edited by Daniela Calvetti, Jari P Kaipio and Erkki
Somersalo.
Special issue of Inverse Problems, November 2014.

UQ and a Model Inverse Problem
Marco Iglesias and Andrew M. Stuart
SIAM News, July/August 2014.

Advantageous for high uncertainties:

I Strongly non-linear problems.

I Severely ill-posed problems.

I Little analytical structure

I Additional model uncertainties.
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From Qualitative to Quantitative Results by Bayesian Inversion

Traditional task: Produce results to be interpreted by trained experts
=⇒ Qualitative usage of the reconstructed information.

New demand: Produce results for automatized analysis procedures /
hypothesis testing; Multimodal imaging.

=⇒ Quantitative usage of the reconstructed information.

Example: Conventional computer tomography (CT).

Source: Wikimedia Commons
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From Qualitative to Quantitative Results by Bayesian Inversion

Traditional task: Produce results to be interpreted by trained experts
=⇒ Qualitative usage of the reconstructed information.

New demand: Produce results for automatized analysis procedures /
hypothesis testing; Multimodal imaging.

=⇒ Quantitative usage of the reconstructed information.

Example: Dynamical causal modeling (DCM).

Source: Andre C. Marreiros et al. (2010), Scholarpedia, 5(7):9568.
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From Qualitative to Quantitative Results by Bayesian Inversion

Traditional task: Produce results to be interpreted by trained experts
=⇒ Qualitative usage of the reconstructed information.

New demand: Produce results for automatized analysis procedures /
hypothesis testing; Multimodal imaging.

=⇒ Quantitative usage of the reconstructed information.

Example: Statistical analysis of microscopy images.

Source: Wikimedia Commons
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Recent Trends in Bayesian Inversion (...that I’m aware of)

I Uncertainty quantification of inverse
solutions.

I Dynamic Bayesian inversion for prediction
or control of dynamical systems

I Infinite dimensional Bayesian inversion.

I Incorporating model uncertainties.

I New ways of encoding a-priori information.

I Large-scale posterior sampling techniques.
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and variable selection:

ûλ = argmin
u

{
1
2‖f − Au‖2

2 + λ‖DTu‖1

}
(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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ûλ = argmin
u

{
1
2‖f − Au‖2

2 + λ‖DTu‖1

}
(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?

Felix Lucka, f.lucka@ucl.ac.uk - Recent Advances in Bayesian Inference for Biomedical Imaging 5



Outline

1 Introduction: Bayesian Inversion

2 Sparsity by `p Priors

3 Hierarchical Bayesian Modeling

4 Discussion, Conclusion and Outlook

5 Appendix
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The `p Approach to Sparse Bayesian Inversion

pprior (u) ∝ exp
(
−λ ‖DTu‖pp

)
, ppost(u|f ) ∝ exp
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)
Decrease p from 2 to 0 and stop at p = 1 for convenience.
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Bayesian Inference with `1 Priors

ppost(u|f ) ∝ exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖1

)

Aims: Bayesian inversion in high dimensions (n→∞).

Priors: Simple `1, total variation (TV), Besov space priors.

Starting points:

Lassas & Siltanen, 2004. Can one use total variation prior
for edge-preserving Bayesian inversion? Inverse Problems, 20.

Lassas, Saksman & Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors. Inverse Problems
and Imaging, 3(1).

Kolehmainen, Lassas, Niinimäki & Siltanen, 2012.
Sparsity-promoting Bayesian inversion. Inverse Problems,
28(2).

0 1/3 2/3 1

0

1

 

 

u
†

λ = 10

λ = 40

λ = 160

λ = 640

λ =2560



Efficient MCMC Techniques for `1 Priors

Task: Monte Carlo integration by samples from

ppost(u|f ) ∝ exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖1

)
Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or λ.

Contributions:

I Development of explicit single component Gibbs sampler.

I Tedious implementation for different scenarios.

I Still efficient in high dimensions (n > 106).

I Detailed evaluation and comparison to MH.

L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors. Inverse Problems, 28(12):125012.



Efficient MCMC Techniques for `1 Priors

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d) MH-Iso, 16h

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h (h) SC Gibbs, 16h

Deconvolution, simple `1 prior, n = 513× 513 = 263 169.
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Recent Generalization: Slice-Within-Gibbs Sampling

pprior (u) ∝ exp
(
−λ‖DTu‖1

)
Limitations:

I D must be diagonalizable (synthesis priors):

I `qp-prior: exp
(
−λ‖DTu‖qp

)
? TV in 2D/3D?

I Non-negativity or other hard-constraints?

Contributions:

I Replace explicit by generalized slice sampling.

I Implementation & evaluation for most common priors.

Neal, 2003. Slice Sampling. Annals of Statistics 31(3)

L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion. submitted, arXiv:1602.08595
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New Light on an Old Debate: MAP vs. CM Estimates

ûMAP := argmax
u∈Rn

{ ppost(u|f )} OR ûCM :=

∫
u ppost(u|f )du

Classical Bayes cost formalism discriminates MAP
(= variational regularization) and advocates CM.

However...

I Theoretical argument has a logical flaw.

I Discrimination of MAP estimate is not intuitive.

I Gaussian priors: MAP = CM. Funny coincidence?

I Non-Gaussian priors: Poor computational validation!

=⇒ Let’s compute some examples!

CM MAP

CM MAP
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Image Deblurring Example in 2D

(a) Unknown function ũ (b) CM estimate by our Gibbs sampler

Deconvolution, simple `1 prior, n = 1023× 1023 = 1 046 529.
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Image Deblurring Example in 2D

(a) Unknown function ũ (b) MAP estimate by ADMM

Deconvolution, simple `1 prior, n = 1023× 1023 = 1 046 529.
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Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004)

”Can one use total variation prior for edge-preserving Bayesian inversion?”

I For λn = const. and n −→∞ the TV prior diverges.
I CM diverges.
I MAP converges to edge-preserving limit.

0 1/3 2/3 1

0

1

 

 

u
†,∞

n = 63

n = 255

n = 1 023

n = 4 095

n = 16 383

n = 65 535

(a) CM by our Gibbs Sampler
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(b) MAP by ADMM
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(a) Zoom into CM estimates
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Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004)

”Can one use total variation prior for edge-preserving Bayesian inversion?”
I For λn ∝

√
n + 1 and n −→∞ the TV prior converges to a

smoothness prior.
I CM converges to smooth limit.
I MAP converges to constant.
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Sparse-Angle-CT with Discretization Invariant Besov Priors

M. Lassas, E. Saksman, S. Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors, Inverse Probl Imaging, 3(1).

V. Kolehmainen, M. Lassas, K. Niinimäki, S. Siltanen, 2012.
Sparsity-promoting Bayesian inversion, Inverse Probl, 28(2).

real solution ũ data f colormap

I CT using only 45 projection angles and 500 measurement pixel.

I Besov space priors using Haar wavelets.



Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 64×64 = 4.096

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 128×128 = 16.384

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 256×256 = 65.536

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 512×512 = 262.144

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 1024×1024 = 1.048.576

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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New Light on an Old Debate: MAP vs CM Estimates

ûMAP := argmax
u∈Rn

{ ppost(u|f )} OR ûCM :=

∫
u ppost(u|f )du

Summary:

I Gaussian priors: MAP = CM. Funny coincidence?

I For reasonable priors, CM and MAP look quite similar.
Fundamentally different?

I If the CM estimate looks good, it looks like the MAP.

I MAP estimates are sparser, sharper, look and perform
better...

I Gribonval, Marchart, Louchet and Moisan, 2011-2013:
CM are MAP estimates for different priors.

=⇒ Classical theory cannot be complete!

CM MAP

CM MAP
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New Light on an Old Debate: MAP vs CM Estimates

ûMAP := argmax
u∈Rn

{ ppost(u|f )} OR ûCM :=

∫
u ppost(u|f )du

We developed new Bayes cost functions such that

I Both MAP and CM are proper Bayes estimators for
proper, convex cost functions.

I Key ingredient: Bregman distances.

I Gaussian case is no strange exception but consistent in
this framework.

M. Burger, F.L., 2014. Maximum a posteriori estimates in
linear inverse problems with log-concave priors are proper
Bayes estimators, Inverse Problems, 30(11):114004.

T. Helin, M. Burger, 2015. Maximum a posteriori
probability estimates in infinite-dimensional Bayesian inverse
problems, Inverse Problems, 31(8):085009.

CM MAP

CM MAP
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Application to Experimental Data: Walnut-CT

I Cooperation with Samuli Siltanen, Esa Niemi et al.

I Implementation of MCMC methods for Fanbeam-CT.

I Besov and TV prior; non-negativity constraints.

I Stochastic noise modeling.

I Bayesian perspective on limited angle CT.

Use the data set for your own work:
http://www.fips.fi/dataset.php (documentation: arXiv:1502.04064)



Walnut-CT with TV Prior: Full Angle

(a) MAP (b) MAP, special color scale (c) CStd

(d) CM (e) CM, special color scale (f) CM of ‖∇u‖2



Walnut-CT with TV Prior: Full vs. Limited Angle

(a) MAP, full (b) CM, full (c) CStd, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



Walnut-CT with TV Prior: Non-Negativity Constraints, Limited Angle

(a) CM, uncon (b) CM, non-neg

(c) CStd, uncon (d) CStd, non-neg
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Gaussian increment prior:

pprior (u) ∝
∏
i

exp

(
− (ui+1 − ui )

2

γ

)
I Gaussian variables take values on a characteristic scale, determined

by γ.
I Similar amplitudes are likely, sparsity (= outliers) is unlikely.
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Conditionally Gaussian increment prior:

pprior (u|γ) ∝
∏
i

exp

(
− (ui+1 − ui )

2

γi

)
Scale-invariant hyperprior to approximate un-informative γ−1

i prior:

phyper (γi ) ∝ γ−(α+1)
i exp

(
− β
γi

)
, inverse gamma distribution

0 γ

p
h
y
p
e
r(
γ
)

γ (λ) 0 1/3 2/3 1

0

1

 

 

u
†

(28, 2.6e-02)

(27, 1.3e-02)

(26, 6.3e-03)

(25, 3.1e-03)

(22, 3.0e-04)

(2−1,1.0e-12)
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The Implicit Energy Functional behind HBM

−1 0 1
0

1

 

 

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 |x| x2

Implicit prior is a Student’s t-prior with ν = 2α, θ = β/(2α):

pprior (u) ∝
∏
i

(
1 +

u2
i

νθ

)−ν−1
2

ppost(u|f ) ∝ exp

(
− 1

2‖f − Au‖2
Σ−1

ε
− ν−1

2

∑
i

log

(
1 +

u2
i

νθ

))



Two Approaches to Sparsity

feature `p prior HBM

J (u) ‖u‖pp ν+1
2

∑
log
(

1 + u2

νθ

)
sparsifying parameter p > 0 ν > 0

quadratic limit p = 2 ν →∞
sparse limit p → 0 ν → 0

limit functional |u|0
∑n

i log (|ui |) if all ui 6= 0,

−∞ else

solutions sparse compressible

differentiable p > 1 always

convex everywhere for p > 1 ‖u‖∞ <
√
νθ

homogeneous yes no

Other stuff related to HBM: Graphical models, general linear models, latent

variable models, Variational Bayes, expectation maximization, scale mixture

models, empirical priors, parametric empirical Bayes, automatic relevance

determination...



Hierarchical, Fully Bayesian Computation

ppost(u, γ|f ) ∝ exp

(
− 1

2‖f − Au‖2
Σ−1

ε
−

n∑
i

(
u2
i + 2β

2γi
+ (α + 1/2) log(γi )

))

All computational approaches (optimization or sampling) exploit the
conditional structure:

I Fix γ and update u by solving 1 n-dim linear problem.

I Fix u and update γ by solving n 1-dim non-linear problems.

Major difficulty: Multimodality of posterior.

Heuristic Full-MAP computation:

I Use MCMC to explore posterior (avoids very sub-optimal modes).

I Initialize alternating optimization by local MCMC averages to
compute local modes.

No guarantee for finding highest mode but usually an acceptable result.



Why HBM? EEG/MEG Source Reconstruction

segmenta(on	  

registra(on	  

surface	  
extrac(on	  

tetrahedral	  
meshing	  

brain	  
anisotropy	  

T1 

T2 

DW 

T2 

Notoriously ill-posed problem!



HBM for EEG/MEG Source Reconstruction

I Inversion with log-concave priors suffers from systematic depth
miss-localization, HBM does not.

I HBM shows promising results for focal brain networks with
simulated and real data.

L., Aydin, Vorwerk, Burger, Wolters, 2013. Hierarchical Fully-Bayesian
Inference for Combined EEG/MEG Source Analysis of Evoked Responses: From
Simulations to Real Data.
BaCI 2013, Geneva.

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Fully-Bayesian Inference for
EEG/MEG combination: Examination of Depth Localization and Source
Separation using Realistic FE Head Models.
Biomag 2012, Paris

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.
NeuroImage, 61(4):1364–1382.
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Summary, Conclusions & Outlook

Bayesian Modeling:

I Sparsity can be modeled in different ways.

I HBM is an interesting but challenging alternative to `p priors.

I Combine `p-type and hierarchical priors: `p-hypermodels.

Bayesian Computation:

I Elementary MCMC samplers may perform very differently.

I Contrary to common beliefs sample-based Bayesian inversion in high
dimensions (n > 106) is feasible if tailored samplers are developed.

I Reason for the efficiency of the Gibbs samplers is unclear.

I Adaptation, parallelization, multimodality, multi-grid.

I Heuristic, fully Bayesian computation for HBM looks promising but
needs more careful examination.
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Summary, Conclusions & Outlook

Bayesian Estimation / Uncertainty Quantification

I MAP estimates are proper Bayes estimators.

I But: Everything beyond ”MAP or CM?” is far more interesting and
can really complement variational approaches.

I However: Extracting information from posterior samples (data
mining) is a non-trivial (future research) topic.

I Application studies had proof-of-concept character up to now.

I Specific UQ task to explore full potential of the Bayesian approach.
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Thank you for your attention!

L, 2016. Fast Gibbs sampling for high-dimensional Bayesian inversion. submitted,
arXiv:1602.08595

L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Münster.

M. Burger, L., 2014. Maximum a posteriori estimates in linear inverse problems
with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference
in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.
NeuroImage, 61(4):1364–1382.
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Efficient MCMC Techniques for `1 Priors
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Temporal autocorrelation R∗(t) for 1D TV-deblurring, n = 63.
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Efficient MCMC Techniques for `1 Priors)
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MH−Iso,     n = 127,  λ = 280
RnGibbs,   n = 127,  λ = 280
 MH−Iso,    n = 255,  λ = 400
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Temporal autocorrelation R∗(t) for 1D TV-deblurring.
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

I CT using only 45 projection angles and 500 measurement pixel.

real solution data f colormap
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, λ = 500 CM, n = 642, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, λ = 500 CM, n = 1282, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, λ = 500 CM, n = 2562, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Examination of Alternative Priors by MCMC: TV-p

ppost(u) ∝ exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖pp

)

0 1/3 2/3 1

0

1

 

 

u
†,∞

p =1.4

p =1.2

p =1.0

p =0.8

(i) CM (Gibbs-MCMC)

0 1/3 2/3 1

0

1

 

 

u
†,∞

p =1.4

p =1.2

p =1.0

p =0.8

(j) MAP (Simulated Annealing)
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MAP vs. CM Estimates: The Classical View

A theoretical argument ”decides” the conflict: The Bayes cost formalism.

I An estimator is a random variable, as it relies on f and u.

I How does it perform on average? Which estimator is ”best”?

I  Define a cost function Ψ(u, v).

I Bayes cost is the expected cost:

BC (û) =

∫∫
Ψ(u, û(f )) plike(f |u) df pprior (u) du

I Bayes estimator ûBC for given Ψ minimizes Bayes cost. Turns out:

ûBC (f ) = argmin
û

{∫
Ψ(u, û(f )) ppost(u|f ) du

}
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MAP vs. CM Estimates: The Classical View

Main classical arguments pro CM and contra MAP estimates:

I CM is Bayes estimator for Ψ(u, û) = ‖u − û‖2
2 (MSE).

I Also the minimum variance estimator.

I The mean value is intuitive, it is the ”center of mass”, the known
”average”.

I MAP estimate can be seen as an asymptotic Bayes estimator of

Ψε(u, û) =

{
0, if ‖u − û‖∞ 6 ε
1 otherwise,

for ε→ 0 (uniform cost). =⇒ It is not a proper Bayes estimator.

I MAP and CM seem theoretically and computationally fundamentally
different =⇒ one should decide.

I “A real Bayesian would not use the MAP estimate”

I People feel ”ashamed” when they have to compute MAP estimates
(even when their results are good).
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A False Conclusion

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

”MAP estimate can be seen as an asymptotic Bayes estimator of

Ψε(u, û) =

{
0, if ‖u − û‖∞ < ε

1 otherwise,

for ε→ 0.
???=⇒??? It is not a proper Bayes estimator.”

”MAP estimator is asymptotic Bayes estimator for some degenerate Ψ”
;“MAP can’t be Bayes estimator for some proper Ψ” !!!!
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Two New Bayes Cost Functions

Define

(a) ΨLS(u, û) := ‖A(û − u)‖2
Σ−1

ε
+ β‖L(û − u)‖2

2

(b) ΨBrg(u, û) := ‖A(û − u)‖2
Σ−1

ε
+ λDJ (û, u)

for a regular L and β > 0.

Properties:

I Proper, convex cost functions

I For J (u) = β/λ‖Lu‖2
2 (Gaussian case!) we have λDJ (û, u) =

β‖L(û − u)‖2
2, and ΨLS(u, û) = ΨBrg(u, û)!

Theorems:

(I) The CM estimate is the Bayes estimator for ΨLS(u, û)

(II) The MAP estimate is the Bayes estimator for ΨBrg(u, û)
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Bregman distances

For a proper, convex functional Ψ : Rn −→ R ∪ {∞}, the Bregman
distance Dp

Ψ(f , g) between f , g ∈ Rn for a subgradient p ∈ ∂Ψ(g) is
defined as

Dp
Ψ(f , g) = Ψ(f )−Ψ(g)− 〈p, f − g〉, p ∈ ∂Ψ(g)

0

0

J (x)

J (v) + J 0(v)(x� v)

DJ (u, v) = J (u)� J (v)� J 0(v)(u� v)

DJ (u, v)

u v

(k) J (x) = x2

0

J (x)

Dq
J (u, v) =J (u)� J (v)� q(u� v)

with q 2 @J (v)

vuw

Dp
J (u, v)

J (v) + p(x� v)

J (v) + r(x� v)

Dr
J (w, v)

p, r 2 @J (v) = [�1, 1]

(l) J (x) = |x |

Basically, DΨ(f , g) measures the difference between Ψ and its
linearization in f at another point g


	Introduction: Bayesian Inversion
	Sparsity by p Priors
	Hierarchical Bayesian Modeling
	Discussion, Conclusion and Outlook
	Appendix

