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Bayesian Inference for Inverse Problems

Noisy, ill-posed inverse problems:

f=N(A(u),e)
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Probabilistic representation allows for a rigorous quantification of the
solution’s uncertainties.



Increased Interest in Bayesian Inversion &

Inverse problems in the Bayesian framework
edited by Daniela Calvetti, Jari P Kaipio and Erkki
Somersalo.

Special issue of Inverse Problems, November 2014,

UQ and a Model Inverse Problem
Marco Iglesias and Andrew M. Stuart
SIAM News, July/August 2014,

Advantageous for high uncertainties:
» Strongly non-linear problems.
» Severely ill-posed problems.
» Little analytical structure
» Additional model uncertainties.
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From Qualitative to Quantitative Results by Bayesian Inversion

Traditional task: Produce results to be interpreted by trained experts
— Qualitative usage of the reconstructed information.

Example: Conventional computer tomography (CT).

Source: Wikimedia Commons
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From Qualitative to Quantitative Results by Bayesian Inversion

Traditional task: Produce results to be interpreted by trained experts
— Qualitative usage of the reconstructed information.

New demand: Produce results for automatized analysis procedures /
hypothesis testing; Multimodal imaging.
— Quantitative usage of the reconstructed information.

Example: Dynamical causal modeling (DCM).

Model 1: Forward Model 2: Backward Model 3: Forward &
Backward

Atten_tion Attention

Photic

Photic

Photic

Motion Motion

Motion
Attention Attention

Source: Andre C. Marreiros et al. (2010), Scholarpedia, 5(7):9568.

Felix Lucka, f.lucka@ucl.ac.uk - Recent Advances in Bayesian Inference for Biomedical Imaging 3



From Qualitative to Quantitative Results by Bayesian Inversion

Traditional task: Produce results to be interpreted by trained experts
— Qualitative usage of the reconstructed information.

New demand: Produce results for automatized analysis procedures /
hypothesis testing; Multimodal imaging.
— Quantitative usage of the reconstructed information.

Example: Statistical analysis of microscopy images.

Source: Wikimedia Commons
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Recent Trends in Bayesian Inversion (...that I'm aware of)

» Uncertainty quantification of inverse
solutions.

o
)
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» Dynamic Bayesian inversion for prediction
or control of dynamical systems

» Infinite dimensional Bayesian inversion.

> Incorporating model uncertainties.

» New ways of encoding a-priori information.

~
N

> Large-scale posterior sampling techniques.
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and variable selection:

oy =argmin{3f —Aul3+X|D7ull1}
u

(e.g. total variation, wavelet shrinkage, LASSO,...)
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and variable selection:

oy =argmin{3f —Aul3+X|D7ull1}
u
(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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Outline

@ Introduction: Bayesian Inversion
@ Sparsity by £, Priors
@ Hierarchical Bayesian Modeling

@ Discussion, Conclusion and Outlook

@ Appendix
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The ¢, Approach to Sparse Bayesian Inversion

Porior (1) X exp (4 ||DTu||5) . Prost(u]F) o exp (—%Hf — Aul - ||DTu||5)

Decrease p from 2 to 0 and stop at p = 1 for convenience.



The ¢, Approach to Sparse Bayesian Inversion &

Porior (1) X exp (4 ||DTu||5) . Prost(u]F) o exp (—%Hf — Aul - ||DTu||g)

Decrease p from 2 to 0 and stop at p = 1 for convenience.
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Bayesian Inference with ¢; Priors

Poost (ulf) ox exp (=31 = AulZ_ =AD" ull)

Aims: Bayesian inversion in high dimensions (n — o0).

Priors: Simple ¢;, total variation (TV), Besov space priors.

Starting points: ‘ \

@ Lassas & Siltanen, 2004. Can one use total variation prior '
for edge-preserving Bayesian inversion? Inverse Problems, 20.  dfeme=s= b

@ Lassas, Saksman & Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors. Inverse Problems
and Imaging, 3(1).

@ Kolehmainen, Lassas, Niinimdki & Siltanen, 2012.
Sparsity-promoting Bayesian inversion. Inverse Problems,
28(2).




Efficient MCMC Techniques for ¢; Priors

Task: Monte Carlo integration by samples from

Poost (u[f) o< exp (—3[1f = AulZ_s = X[ DTul)

Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or A.

Contributions:
» Development of explicit single component Gibbs sampler.
» Tedious implementation for different scenarios.
» Still efficient in high dimensions (n > 10°).
» Detailed evaluation and comparison to MH.

@ L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
LI-type priors. Inverse Problems, 28(12):125012.

vz
=




Efficient MCMC Techniques for ¢; Priors &

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d)

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h  (h) SC Gibbs, 16h

Deconvolution, simple ¢; prior, n =513 x 513 = 263 169.
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Recent Generalization: Slice-Within-Gibbs Sampling

pprior(u) X exp (_)‘HDTu”l)

Limitations:
» D must be diagonalizable (synthesis priors):
> (9-prior: exp (—A[[DTul|9)? TV in 2D/3D?
» Non-negativity or other hard-constraints?

Contributions:
> Replace explicit by generalized slice sampling.
> Implementation & evaluation for most common priors.

@ Neal, 2003. Slice Sampling. Annals of Statistics 31(3)

@ L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion. submitted, arXiv:1602.08595
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New Light on an Old Debate: MAP vs. CM Estimates

fJMAP::argrEax{ppost(uV)} OR Oy ::/uppost(u|f) du
ueR”

Classical Bayes cost formalism discriminates MAP
(= variational regularization) and advocates CM.

cr MAP
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New Light on an Old Debate: MAP vs. CM Estimates

T
Dap ::argrgax{ Ppost(Ulf)}  OR iy ::/u Ppost(U|f) du i
ueR" {

Classical Bayes cost formalism discriminates MAP
(= variational regularization) and advocates CM.

However...

» Theoretical argument has a logical flaw.

» Discrimination of MAP estimate is not intuitive.

» Gaussian priors: MAP = CM. Funny coincidence? e

» Non-Gaussian priors: Poor computational validation!

cr MAP
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New Light on an Old Debate: MAP vs. CM Estimates

T
Dap ::argrgax{ Ppost(Ulf)}  OR iy ::/u Ppost(U|f) du i -
ueR" {

Classical Bayes cost formalism discriminates MAP
(= variational regularization) and advocates CM.

However...

» Theoretical argument has a logical flaw.

» Discrimination of MAP estimate is not intuitive.

» Gaussian priors: MAP = CM. Funny coincidence? 2

» Non-Gaussian priors: Poor computational validation!

— Let's compute some examples!

cr MAP
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Image Deblurring Example in 2D &

(a) Unknown function & (b) CM estimate by our Gibbs sampler

Deconvolution, simple ¢; prior, n = 1023 x 1023 = 1046 529.
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Image Deblurring Example in 2D &

(a) Unknown function & (b) MAP estimate by ADMM

Deconvolution, simple ¢; prior, n = 1023 x 1023 = 1046 529.
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Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004) 4

"Can one use total variation prior for edge-preserving Bayesian inversion?”
» For A\, = const. and n — oo the TV prior diverges.

» CM diverges.
» MAP converges to edge-preserving limit.

uto uho
—n = 63 | it —n = 63 |
—n= 255 —n= 255
n= 1023 n= 1023
n= 4095 n = 4095
n = 16383 n = 16383
—n = 65535 —n = 65535

0 13 213 10 1/3 23 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004) 4

"Can one use total variation prior for edge-preserving Bayesian inversion?”
» For A\, = const. and n — oo the TV prior diverges.

» CM diverges.
» MAP converges to edge-preserving limit.

whoe utoo

—n = 63

213

213 13

(b) MCMC convergence check

(a) Zoom into CM estimates



Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004) 4

"Can one use total variation prior for edge-preserving Bayesian inversion?”
» For A\, x v/n+1 and n — oo the TV prior converges to a
smoothness prior.
» CM converges to smooth limit.
» MAP converges to constant.

A uhee I utoe
—n = 63 —n = 63

—n= 255 —n= 255

n= 1023 n= 1023

n = 4095 n= 4095

n = 16 383 n = 16383

—n = 65535 —n = 65535

0 13 23 10 13 213 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



Sparse-Angle-CT with Discretization Invariant Besov Priors 4

@ M. Lassas, E. Saksman, S. Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors, Inverse Probl Imaging, 3(1).

@ V. Kolehmainen, M. Lassas, K. Niinimdki, S. Siltanen, 2012.
Sparsity-promoting Bayesian inversion, Inverse Probl, 28(2).

m |

real solution & data f colormap

» CT using only 45 projection angles and 500 measurement pixel.

» Besov space priors using Haar wavelets.



Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 64x64 = 4.096

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 128x128 = 16.384

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 256x256 = 65.536

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 512x512 = 262.144

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 1024x1024 = 1.048.576

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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New Light on an Old Debate: MAP vs CM Estimates

|
s = argmax { ppos(ulf)}  OR = / U pposc(ulf)du | |
ueRn {

Summary:

> Gaussian priors: MAP = CM. Funny coincidence?

» For reasonable priors, CM and MAP look quite similar.
Fundamentally different?

> If the CM estimate looks good, it looks like the MAP.

» MAP estimates are sparser, sharper, look and perform
better...

» Gribonval, Marchart, Louchet and Moisan, 2011-2013:
CM are MAP estimates for different priors.

— Classical theory cannot be complete! \

cr MAP
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New Light on an Old Debate: MAP vs CM Estimates

B = argmax { ppos(ulf)}  OR 0 ::/uppost(u|f)du
ueRRn

We developed new Bayes cost functions such that XQ ‘

» Both MAP and CM are proper Bayes estimators for
proper, convex cost functions.

> Key ingredient: Bregman distances.

» Gaussian case is no strange exception but consistent in
this framework.

@ M. Burger, F.L., 2014. Maximum a posteriori estimates in
linear inverse problems with log-concave priors are proper
Bayes estimators, Inverse Problems, 30(11):114004.

@ T. Helin, M. Burger, 2015. Maximum a posteriori
probability estimates in infinite-dimensional Bayesian inverse
problems, Inverse Problems, 31(8):085009.

cr MAP
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Application to Experimental Data: Walnut-CT &

Cooperation with Samuli Siltanen, Esa Niemi et al.

v

v

Implementation of MCMC methods for Fanbeam-CT.

v

Besov and TV prior; non-negativity constraints.

v

Stochastic noise modeling.

v

Bayesian perspective on limited angle CT.

Use the data set for your own work:
http://www.fips.fi/dataset.php (documentation: arXiv:1502.04064)



Walnut-CT with TV Prior: Full Angle &

(b) MAP, special color scale

(e) CM, special color scale (f) CM of ||Vul|2



Walnut-CT with TV Prior: Full vs. Limited Angle &

(a) MAP, full (b) CM, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



Walnut-CT with TV Prior: Non-Negativity Constraints, Limited Angley

(c) CStd, uncon (d) CStd, non-neg



Outline

@ Introduction: Bayesian Inversion
@ Sparsity by £, Priors
@ Hierarchical Bayesian Modeling

@ Discussion, Conclusion and Outlook

@ Appendix
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Gaussian increment prior:

pprior(u) X H exp <—M>

» Gaussian variables take values on a characteristic scale, determined

by 7.
» Similar amplitudes are likely, sparsity (= outliers) is unlikely.

uf>
— A =257
— A =50%
— A =100°

0 13 213 1
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Conditionally Gaussian increment prior:
2
Uiyl — Uj
Pprior(u7) o Hexp (—¥>
. 1
1
Scale-invariant hyperprior to approximate un-informative 7,._1 prior:

—(a B
Phyper (Vi) X ; (o) exp <——

, inverse gamma distribution
i

ut
4 e (2% 2.6e-02)
g ‘ (27, 1.3e-02)
——(25, 6.3e-03)

Phyper(7)

——(2?, 3.0¢-04)
——(27",1.0e-12)

0 (N v
Felix Lucka, f.lucka®@ucl.ac.uk

0 13 23 1
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The Implicit Energy Functional behind HBM &

[p=1® —p=107—p=107—p=10"p=10"—W o]

N
N

Implicit prior is a Student’s t-prior with v = 2,0 = 3/(2«):

AN
pprior(u) X H (1 + Vlg)

u?
Ppost(u|f) o exp (—%Hf — Au||22;1 -l Z log (1 + y_,0>>

2



Two Approaches to Sparsity &

feature £y prior HBM
() Jull3 51 Y log (1+ )
sparsifying parameter p>0 v>0
quadratic limit p=2 v — 00
sparse limit p—0 v—0
limit functional lulo > log (Ju;l) if all u; # 0,
—00 else
solutions sparse compressible
differentiable p>1 always
convex everywhere for p > 1 ulloo < V1O
homogeneous yes no

Other stuff related to HBM: Graphical models, general linear models, latent
variable models, Variational Bayes, expectation maximization, scale mixture

models, empirical priors, parametric empirical Bayes, automatic relevance
determination...



Hierarchical, Fully Bayesian Computation &

1 2 (228
poea0717) xexp (<317~ Awl =3 (52 4 (a4 1/2) 0g()

i
All computational approaches (optimization or sampling) exploit the
conditional structure:
» Fix v and update u by solving 1 n-dim linear problem.
» Fix u and update v by solving n 1-dim non-linear problems.

Major difficulty: Multimodality of posterior.

Heuristic Full-MAP computation:
» Use MCMC to explore posterior (avoids very sub-optimal modes).

» Initialize alternating optimization by local MCMC averages to
compute local modes.

No guarantee for finding highest mode but usually an acceptable result.



Why HBM? EEG/MEG Source Reconstruction

surface
extraction

segmentation

>‘ registration

Notoriously ill-posed problem!



HBM for EEG/MEG Source Reconstruction

» Inversion with log-concave priors suffers from systematic depth
miss-localization, HBM does not.

» HBM shows promising results for focal brain networks with
simulated and real data.

@ L., Aydin, Vorwerk, Burger, Wolters, 2013. Hierarchical Fully-Bayesian
Inference for Combined EEG/MEG Source Analysis of Evoked Responses: From
Simulations to Real Data.

BaCl 2013, Geneva.

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Fully-Bayesian Inference for
EEG/MEG combination: Examination of Depth Localization and Source
Separation using Realistic FE Head Models.

Biomag 2012, Paris

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.

Neurolmage, 61(4):1364-1382.
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Summary, Conclusions & Outlook &

Bayesian Modeling:
» Sparsity can be modeled in different ways.
» HBM is an interesting but challenging alternative to ¢, priors.

» Combine /,-type and hierarchical priors: £,-hypermodels.

Bayesian Computation:
> Elementary MCMC samplers may perform very differently.

> Contrary to common beliefs sample-based Bayesian inversion in high
dimensions (n > 10°) is feasible if tailored samplers are developed.

» Reason for the efficiency of the Gibbs samplers is unclear.
» Adaptation, parallelization, multimodality, multi-grid.

» Heuristic, fully Bayesian computation for HBM looks promising but
needs more careful examination.
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Summary, Conclusions & Outlook &

Bayesian Estimation / Uncertainty Quantification

» MAP estimates are proper Bayes estimators.

» But: Everything beyond "MAP or CM?" is far more interesting and
can really complement variational approaches.

» However: Extracting information from posterior samples (data
mining) is a non-trivial (future research) topic.

» Application studies had proof-of-concept character up to now.

» Specific UQ task to explore full potential of the Bayesian approach.
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L, 2016. Fast Gibbs sampling for high-dimensional Bayesian inversion. submitted,
arXiv:1602.08595

L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Miinster.

M. Burger, L., 2014. Maximum a posteriori estimates in linear inverse problems
with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference
in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.

Neurolmage, 61(4):1364-1382.
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Thank you for your attention!

@ L, 2016. Fast Gibbs sampling for high-dimensional Bayesian inversion. submitted,
arXiv:1602.08595

L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Miinster.

[
B M. Burger, L., 2014. Maximum a posteriori estimates in linear inverse problems
with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.
@ L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference
in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.

Neurolmage, 61(4):1364-1382.
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Efficient MCMC Techniques for ¢; Priors

1 T T T
MH, A =100
—MH, A =200
0.8 —MH, A =400
Gibbs, A = 100
—Gibbs, A =200
06 —Gibbs, A = 400
N~
o
0.4
0.2
ot ‘ ‘ ‘
0 1 t (sec) 2 3

Temporal autocorrelation R*(t) for 1D TV-deblurring, n = 63.
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Efficient MCMC Techniques for ¢; Priors)

——MH-Iso, n=127, A =280
-~ -RnGibbs, n=127, A =280
— MH-Iso, n =255, A =400
---RnGibbs, n=255, A =400
—MH-Iso, n=511, A =560
---RnGibbs n=511, A =560
—MH-Iso, n=1023, A =800
---RnGibbs, n=1023, A =800

t(sec)  10°

Temporal autocorrelation R*(t) for 1D TV-deblurring.
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

» CT using only 45 projection angles and 500 measurement pixel.

m 4: |

real solution data f colormap
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, A =500 CM, n= 642, A =500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, A = 500 CM, n= 1282, A\ = 500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, A = 500 CM, n = 2562, X\ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I.
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Examination of Alternative Priors by MCMC: TV-p

Ppost(U) o exp (—%Hf —A “”2):;1 - A ||DTu||g)

b e
1 — p=141 — p=14
— p=1.2 7 3 — p=12
— p=1.0 — p=1.0
— p=0.8 — p=0.8
0 o ] Ny
0 13 203 10 173 213 1
(i) CM (Gibbs-MCMC) (J) MAP (Simulated Annealing)
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MAP vs. CM Estimates: The Classical View &

A theoretical argument "decides” the conflict: The Bayes cost formalism.

» An estimator is a random variable, as it relies on f and wv.
» How does it perform on average? Which estimator is "best?
» ~ Define a cost function ¥ (u, v).

» Bayes cost is the expected cost:

BC(0) = / / (u, B(F)) pre(F1u) AF Poior () du

v

Bayes estimator Ugc for given ¥ minimizes Bayes cost. Turns out:

tec(r) = argmin { [ (0,0(7) pps(ul) )
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MAP vs. CM Estimates: The Classical View &

Main classical arguments pro CM and contra MAP estimates:
» CM is Bayes estimator for ¥(u, 8) = ||u — @||3 (MSE).
» Also the minimum variance estimator.

» The mean value is intuitive, it is the "center of mass”, the known
"average”.

» MAP estimate can be seen as an asymptotic Bayes estimator of

7, (u, B) 0, if |lu—10]eo<e
e\U,u) = .
1 otherwise,

for ¢ — 0 (uniform cost). = It is not a proper Bayes estimator.

» MAP and CM seem theoretically and computationally fundamentally
different = one should decide.

> “A real Bayesian would not use the MAP estimate”

» People feel "ashamed” when they have to compute MAP estimates
(even when their results are good).
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A False Conclusion

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

"MAP estimate can be seen as an asymptotic Bayes estimator of

0, if lu—ille <e

U (u, )=
(u, ) 1 otherwise,

for e —» 0.
777==777 It is not a proper Bayes estimator.”

"MAP estimator is asymptotic Bayes estimator for some degenerate ¥”
=+ “MAP can’t be Bayes estimator for some proper ¥" Il
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Two New Bayes Cost Functions &

Define

(2) Wus(u, ) = [|A(G = u)ll3-s + BIIL(D — u)||3
(b) Wa(u, 8) = |A(E — )2, + ADs (2, u)
for a regular L and 8 > 0. )

Properties:
» Proper, convex cost functions

» For J(u) = B/\||Lu||3 (Gaussian case!) we have AD (&I, u) =
BlIL(& — u)||3, and Ws(u, &) = Wy, (u, 0)!

Theorems:
(I) The CM estimate is the Bayes estimator for ¥s(u, i)
(I1) The MAP estimate is the Bayes estimator for W, (u, 01)
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Bregman distances &

For a proper, convex functional ¥ : R" — R U {oo}, the Bregman
distance D,(f,g) between f, g € R" for a subgradient p € 9V(g) is
defined as

Dy(f,g) =V(f)—V(g)— (p,f—g), pecdV(g)

T T T

| Dsu0) = @ - T0) - T ) —v) Diluv) =7 () = I (v) = gl — v)
: : : with ¢ € T (v)
e B e
| o Dy N
Dy (u,v) 3 ! | T (@) +pz—v)
R R e B e S IS R TR 1
' T () + T (v)(z —v) D?(u.v? ! J ) +r(z—v)
) ) ) - L opredd() =[-1,1]
% PR T
(k) T(x) = x? (1) T = ||

Basically, Dy(f, g) measures the difference between W and its
linearization in f at another point g
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