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Classification/Outline

“Hierarchical Bayesian Approaches to the Inverse Problem of EEG/MEG
Current Density Reconstruction”

I EEG/MEG current density reconstruction: The application, a biomedical
imaging modality used in brain research/clinical diagnosis.

I Inverse problems: The mathematical field of research, rooted in applied
functional analysis and statistical inference.

I Hierarchical Bayesian approaches: Statistical inference framework suited for
the inverse problem of EEG/MEG.
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Classification/Outline

Also important (and most work) but not covered by this talk:

I Mathematical modeling of bioelectromagnetism.

I Finite element modeling for EEG/MEG.

I Algorithms and implementation.

Focus on introduction to topics and concepts, not on formulas...
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Electroencephalography (EEG) and Magnetoencephalography (MEG)

Aim: Reconstruction of brain activity by non-invasive measurement of induced
electromagnetic fields outside of the skull.

,
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Source reconstruction in EEG/MEG: An inverse problem

Reconstruction of brain activity by non-invasive measurement of induced
electromagnetic fields outside of the skull.

=⇒ Typical inverse problem

What’s an inverse problem in general?

Setting:
I Interesting quantity; Not directly observable.
I Interesting quantity is cause for derived quantity which is observable.
I Relation given by PDEs:

I Interesting quantity: Source term or parameter.
I Derived quantity: Function of the solution.

I Direct problem: Calculate the observable result of a given cause.
I Inverse problem: Reconstruct the cause that led to an observed result.

(More general: Infer information about interesting quantity based on observation

and computational model)

,
,
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Characteristic features of inverse problems

Hadamard’s definition of well-posed problems:

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.

If one of the conditions does not hold, the problem
is called ill-posed.

Inverse problems are typically ill-posed.

Jacques Salomon Hadamard

(1865-1963)
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What about the inverse problem of EEG/MEG?

I (Presumably) under-determined

I Severely ill-conditioned

I Low SNRs

,
,
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Summary: The problem is severely ill-posed:

Measurements alone are insufficient and unsuitable to determine solution.

=⇒ Incorporation of a-priori information about the solution in an explicit or
implicit way:

I Knowledge about general/specific brain activity?
I Mathematical formulation?
I Computational implementation?

=⇒ Variety of inverse methods for EEG/MEG

Our focus: Hierarchical Bayesian inference for current density reconstruction
(CDR)

,
,
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Current Density Reconstruction
Discretization of an underlying continuous current distribution by large number
of current dipoles with fixed location and orientation.
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Current Density Reconstruction

Lead-field matrix concept:
I L ∈ Rm×n; columns represent measurements at m sensors caused by the n

single current dipoles.
I Linear combination of the dipoles is represented by source vector s ∈ Rn.
I Measurements b ∈ Rm caused by s can then be calculated via:

b = L s

Infer s from b? Apparently ill-posed problem:
I n� m. =⇒ b = L s is under-determined.
I L inherits the bad condition of the continuous problem.
I Noise E ∼ N (0, σ2Id) is added to signal.

High uncertainty and under-determinateness of a problem?

=⇒ Account for them explicitly by formulating the problem in a
statistical framework
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise.

I B = L s + E b is now random vaiable B

I Compute probability density of B given s: plike(b|s) (likelihood)

,
,
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
plike(b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest. −→ Bayesian modeling:

I s is considered to be a random variable itself (s → S).

I Its distribution pprior (s) reflects a-priori assumptions/knowledge.

I Task of the prior: Render the estimation problem well-posed.
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
plike(b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior (s)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule:

ppost(s|b) =
plike(b|s)pprior (s)

p(b)

I Conditional distribution of S given B is called posterior distribution.

I Represents all information on S given the realization of B = b.

I Complete solution to the inverse problem in Bayesian Inference
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
plike(b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior (s)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule: ppost(s|b)

4. Exploit a-posteriori information by infering point estimates:

1. Maximum a-posteriori-estimate (MAP): ŝMAP := argmaxs∈Rn ppost(s|b).
Practically: High-dimensional optimization problem.

2. Conditional mean-estimate (CM): ŝCM := E [s|b] =
∫
Rn s ppost(s|b)ds.

Practically: High-dimensional integration problem.
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the
prior used for the inference based on
this data!

Sounds like...

...but can be formulated into a consistent, statistical reasoning by adding a new
dimension of inference: Hyperparameters and hyperpriors.

Top-down construction scheme → Hierarchical Bayesian modeling (HBM)

.
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Hierarchical Bayesian Modeling (HBM)

Overview:

I Current trend in all areas of Bayesian inference.

I Flexible framework for the construction and automatic, data-driven
reduction of complex models.

I Different levels for the embedding of qualitative or quantitative a-priori
information.

I Comprises many former methods and offers new ways of inference.

,
,

Felix Lucka



w
is
se
n
le
be
n

W
W
U
M
ün
st
er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER 18 /63

Example: Hierarchical Bayesian Modeling of Focal Activity

Wanted: A prior promoting focal source activity.

First try:

I Take Gaussian prior with zero mean and covariance Σs = γ · Id, γ > 0
(Minimum norm estimation).

I Compute MAP or CM estimate (equal)!

,
,
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Example: Hierarchical Bayesian Modeling of Focal Activity

First try: NOT a focal reconstruction.
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Example: Hierarchical Bayesian Modeling of Focal Activity

What went wrong?

I Gaussian variables = characteristic scale given by variance.
(not scale invariant)

I All sources have variance γ =⇒ Similar amplitudes are likely.

I =⇒ Focal activity is very unlikely.

,
,
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:

I Let sources at single locations i have different variances γi .

I Let the data determine γi =⇒ New level of inference!

I γ = (γi )i are called hyperparameters.

I Bayesian inference: γ are random variables as well.

I Their prior distribution phyper (γ) is called hyperprior.

I Encode focality assumption into hyperprior:

I Focality: Nearby sources should a-priori not be mutually dependent.

I Focality: Most sources silent, few with large amplitude;

I No location preference for activity should be given a priori.

,
,
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:

I Let sources at single locations i have different variances γi .

I Let the data determine γi =⇒ New level of inference!

I γ = (γi )i are called hyperparameters.

I Bayesian inference: γ are random variables as well.

I Their prior distribution phyper (γ) is called hyperprior.

I Encode focality assumption into hyperprior:

I γi should be stochastically independent.

I Sparsity inducing hyperprior, e.g., inverse gamma distribution.

I γi should be equally distributed.
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Example: Hierarchical Bayesian Modeling of Focal Activity
Full-CM estimate computed via blocked Gibbs MCMC integration, see Calvetti
et al., 2009.



Example: Hierarchical Bayesian Modeling of Focal Activity

Full-MAP estimate computed as in Calvetti et al., 2009.



Example: Hierarchical Bayesian Modeling of Focal Activity

Full-MAP estimate proposed by us (higher posterior probability than former one).
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Studies: Motivation

Tasks for EEG/MEG in presurgical epilepsy diagnosis

I Focal epilepsy is believed to originate from networks of focal sources.

I Active in inter-ictal spikes.

I Task 1: Determine number of focal sources (multi focal epilepsy?).

I Task 2: Determine location and extend of sources.

Problems of established inverse methods:

I Depth-Bias: Reconstruction of deeper sources too close to the surface.

I Masking: Near-surface sources “mask“ deep-lying ones.

Can hierarchical Bayesian inference do better?
→ Systematic examination via simulation studies.

,
,
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Depth Bias Study: Illustration

One source moving into the depth: Minimum norm estimate (MNE).



Depth Bias Study: Illustration

One source moving into the depth: sLORETA.



Depth Bias Study: Illustration

One source moving into the depth: CM for specific HBM.



Depth Bias Study: Illustration

One source moving into the depth: MAP for specific HBM.
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Depth Bias Study: Results

Study:

I Systematic study over 1000 dipoles; random location and orientation.

I Noise level 5%.

I Reconstructions were compared using different performance measures.

I Specific examination of depth bias.

Results of CM and MAP estimates for single sources:

I Good performance in all validation measures.

I Seem to have no depth bias.

I Good approximations to the real current density with respect to orientation,
amplitude and spatial extend.

I MAP estimate yields best results in every examined aspect.

,
,
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Masking Study: Illustration

Reference sources.



Masking Study: Illustration

MNE result and reference sources



Masking Study: Illustration

sLORETA result and reference sources



Masking Study: Illustration

CM result and reference sources



Masking Study: Illustration

MAP result and reference sources
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Masking Study: Results

I Systematic study of 1000 source configurations consisting of one
near-surface and one deep-lying dipole.

I Noise at a noise level of 5%.

I Reconstructions were compared using a new performance measure based on
optimal transport (a Wasserstein metric).

I HBM based MAP and CM estimation yield best results.

,
,
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Three Dipoles: MNE



Three Dipoles: MNE, threshold = 30%



Three Dipoles: MNE, threshold = 50%



Three Dipoles: MNE, threshold = 70%



Three Dipoles: sLORETA



Three Dipoles: sLORETA, threshold = 30%



Three Dipoles: sLORETA, threshold = 50%



Three Dipoles: sLORETA, threshold = 70%



Three Dipoles: CM



Three Dipoles: MAP
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Take Home Messages & Conclusions

General:

I Inverse problems deal with infering information from indirect measurements.

I Inverse problems are ill-posed.

I Bayesian inference is a suitable framework to deal with the ill-posedness.

I Empirical Bayesian inference helps in the absence of proper a-priori
information.

Specific results for EEG/MEG

I Hierarchical Bayesian modeling is a promising framework for EEG/MEG.

I Promising results for deep sources (no depth bias).

I Promising results for challenging multiple source scenarios (no masking).

,
,
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Thank you

for

your attention!
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Software

I Model generation: FSL, CURRY, Tetgen.

I Forward simulation: SimBio.

I Inverse computation: Matlab.

I Volume Visualization: SCIRun.

,
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Studies: Head Model Generation Pipeline

registration
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surfaces

volume meshingsource 
space 

construction

forward
computation

T1

T2



Studies: Tetrahedron Head Model

I Compartments: Skin, eyes, skull compacta and skull spongiosa, inner brain.

I 512 394 FEM nodes and 3 176 162 tetrahedra



Studies: Sensor Configuration

Artificial full-coverage EEG sensor cap (134 sensors).
Reason: Exclude effect of insufficient sensor coverage.



Studies: Source Space Nodes

1000 source space nodes based on a regular grid.



Studies: Source Space Nodes

1000 source space nodes based on a regular grid.
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Neural Generators
Signals derive from the net effect of ionic currents flowing in the dendrites of
neurons during correlated synaptic transmission.

EEG: Extracellular volume currents produced by postsynaptic potentials.
→ strongly dependent on tissue’s conductivity.

MEG: Intracellular currents associated with these postsynaptic potentials.
→ less dependent on tissue’s conductivity.

source: Wikimedia Commons ,
,
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Applications of EEG/MEG

I Main clinical application: Epilepsy, esp.
presurgical diagnosis.

I Main scientific applications:
I Examination tool in cognitive neuroscience.
I Validation of therapeutic approaches in

clinical neuroscience.

,
,
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Applications of inverse problems

I Biomedial imaging

I Computer vision, machine learning

I Geophysics, oceanography

I Remote sensing

I Nondestructive testing

I Astronomy

,
,
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Normal Statistical Inference

Principles of normal statistical inference:

I Make stochastic model for the relation between parameters, data and noise:

B = L s + E b is now random vaiable B

I Infer parameters of interest by a statistical inference strategy, e.g.,
maximum likelihood estimation:

I Compute probability density of B given S = s: plike(b|s) (likelihood).
I Maximize plike(b|s) w.r.t. s: ŝML := argmaxs∈Rn plike(b|s).
I Leads to b = L s again...

For typical inverse problems:
Doomed to fail, since ill-posed, only accounts for measurement uncertainty.

,
,
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Example: Gaussian Scale Mixtures for Focal Activity

In formulas:

pprior (s|γ) ∼ N (0,Σs(γ)), where Σs(γ) = diag (γi · Id3, i = 1, . . . , k)

phyper (γ) =
k∏

i=1

pi
hyper (γi ) =

k∏
i=1

phyper (γi ) =
k∏

i=1

βα

Γ(α)
γ−α−1
i exp

(
− β
γi

)
α > 0 and β > 0 determine shape and scale, Γ(x) denotes the Gamma function.

Joint prior: ppr (s,γ) = pprior (s|γ) phyper (γ)

Implicit prior: ppr (s) =

∫
pprior (s|γ) phyper (γ)dγ

=

∫
N (0,Σs(γ)) phyper (γ)dγ  “Gaussian scale mixture”

,
,
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Example: Gaussian Scale Mixtures for Focal Activity

Posterior, general:

ppost(s,γ|b) ∝ plike(b|s) pprior (s|γ) phyper (γ)

Comparison: ppost(s|b) ∝ plike(b|s) pprior (s)

Posterior, concrete:

ppost(s,γ|b) ∝

exp

(
− 1

2σ2
‖b − L s‖2

2 −
k∑

i=1

(
1
2
‖si∗‖2 + β

γi
+
(
α + 5

2

)
ln γi

))
Analytical advantages...

I Energy is quadratic with respect to s
I Factorizes over γi ’s.

and disadvantages...

I Energy is non-convex w.r.t. (s,γ) (posterior is multimodal)

,
,
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Full-, Semi-, and Approximate Inversion

Two types of parameters −→ more possible ways of inference.

Full-MAP: Maximize ppost(s,γ|b) w.r.t. s and γ.

Full-CM: Integrate ppost(s,γ|b) w.r.t. s and γ.

γ-MAP: Integrate ppost(s,γ|b) w.r.t. s, and maximize over γ, first.
Then use ppost(s, γ̂(b)|b) to infer s. (Hyperparameter
MAP/Empirical Bayes)

S-MAP: Integrate ppost(s,γ|b) w.r.t. γ, and maximize over s.

VB: Assume approximative factorization
ppost(s, γ|b) ≈ p̂post(s|b) p̂post(γ|b); Approximate both with
distributions that are analytically tractable.

Focus of our work: Fully Bayesian inference.

,
,
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What’s an inverse problem in general?

Direct problem: Calculate the observable result of a given cause.

Inverse problem: Reconstruct the cause that led to an observed result.
(More general: Infer information about interesting quantity based on

observation and computational model)

Solving the inverse problem necessitates modeling and solving the direct problem
(→ rest of the IBB work group)
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