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Current Density Reconstruction”

Felix Lucka



-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT
MOUNSTER

Classification/Outline

“Hierarchical Bayesian Approaches to the Inverse Problem of EEG/MEG
Current Density Reconstruction”

» EEG/MEG current density reconstruction: The application, a biomedical
imaging modality used in brain research/clinical diagnosis.
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Classification/Outline

“Hierarchical Bayesian Approaches to the Inverse Problem of EEG/MEG
Current Density Reconstruction”

» EEG/MEG current density reconstruction: The application, a biomedical
imaging modality used in brain research/clinical diagnosis.

> Inverse problems: The mathematical field of research, rooted in applied
functional analysis and statistical inference.
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Classification/Outline

“Hierarchical Bayesian Approaches to the Inverse Problem of EEG/MEG
Current Density Reconstruction”

» EEG/MEG current density reconstruction: The application, a biomedical
imaging modality used in brain research/clinical diagnosis.

> Inverse problems: The mathematical field of research, rooted in applied
functional analysis and statistical inference.

> Hierarchical Bayesian approaches: Statistical inference framework suited for
the inverse problem of EEG/MEG.

Felix Lucka
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Classification/Outline

Also important (and most work) but not covered by this talk:

» Mathematical modeling of bioelectromagnetism.
» Finite element modeling for EEG/MEG.

» Algorithms and implementation.

Focus on introduction to topics and concepts, not on formulas...

Felix Lucka
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Electroencephalography (EEG) and Magnetoencephalography (MEG)

Aim: Reconstruction of brain activity by non-invasive measurement of induced
electromagnetic fields outside of the skull.

Felix Lucka
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Source reconstruction in EEG/MEG: An inverse problem

Reconstruction of brain activity by non-invasive measurement of induced
electromagnetic fields outside of the skull.

—> Typical inverse problem

Felix Lucka
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Source reconstruction in EEG/MEG: An inverse problem

Reconstruction of brain activity by non-invasive measurement of induced
electromagnetic fields outside of the skull.

—> Typical inverse problem

What's an inverse problem in general?

Setting:
> Interesting quantity; Not directly observable.

> Interesting quantity is cause for derived quantity which is observable.
> Relation given by PDEs:

> Interesting quantity: Source term or parameter.

> Derived quantity: Function of the solution.

Direct problem: Calculate the observable result of a given cause.
Inverse problem: Reconstruct the cause that led to an observed result.
(More general: Infer information about interesting quantity based on observation

vy

and computational model)

Felix Lucka
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Characteristic features of inverse problems

Hadamard's definition of well-posed problems:
1. A solution exists.

2. The solution is unique.

3. The solution depends continuously on the data.

If one of the conditions does not hold, the problem
is called ill-posed.

Inverse problems are typically ill-posed.

Jacques Salomon Hadamard
(1865-1963)

Felix Lucka
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What about the inverse problem of EEG/MEG?

> (Presumably) under-determined

> Severely ill-conditioned

> Low SNRs

Felix Lucka
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Summary: The problem is severely ill-posed:

Measurements alone are insufficient and unsuitable to determine solution.

= Incorporation of a-priori information about the solution in an explicit or
implicit way:
> Knowledge about general/specific brain activity?
> Mathematical formulation?
» Computational implementation?

— Variety of inverse methods for EEG/MEG

Our focus: Hierarchical Bayesian inference for current density reconstruction
(CDR)

Felix Lucka



Current Density Reconstruction
Discretization of an underlying continuous current distribution by large number
of current dipoles with fixed location and orientation.
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Current Density Reconstruction
Lead-field matrix concept:

» L € R™*"; columns represent measurements at m sensors caused by the n
single current dipoles.

» Linear combination of the dipoles is represented by source vector s € R".
» Measurements b € R™ caused by s can then be calculated via:

b=Ls

11
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Current Density Reconstruction

Lead-field matrix concept:
» L € R™*"; columns represent measurements at m sensors caused by the n
single current dipoles.
» Linear combination of the dipoles is represented by source vector s € R".
» Measurements b € R™ caused by s can then be calculated via:

b=Ls

Infer s from b? Apparently ill-posed problem:
> n> m. —> b = Ls is under-determined.
» L inherits the bad condition of the continuous problem.
> Noise & ~ N(0,0°1d) is added to signal.

11
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Current Density Reconstruction
Lead-field matrix concept:

» L € R™*"; columns represent measurements at m sensors caused by the n
single current dipoles.

» Linear combination of the dipoles is represented by source vector s € R".
» Measurements b € R™ caused by s can then be calculated via:

b=Ls

Infer s from b? Apparently ill-posed problem:
> n> m. —> b = Ls is under-determined.
» L inherits the bad condition of the continuous problem.
> Noise & ~ N(0,0°1d) is added to signal.

High uncertainty and under-determinateness of a problem?

= Account for them explicitly by formulating the problem in a
statistical framework

11

Felix Lucka
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise.

» B=Ls+¢& b is now random vaiable B

» Compute probability density of B given s: pike(b|s) (likelihood)

12

Felix Lucka
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
Piike (b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest. — Bayesian modeling:

> s is considered to be a random variable itself (s — S).
> Its distribution pprior(s) reflects a-priori assumptions/knowledge.

» Task of the prior: Render the estimation problem well-posed.

Felix Lucka
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
Piike (b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior(s)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule:

_ Pie(bl5)Pprior(5)
Ppost (s|) = o(b)

» Conditional distribution of S given B is called posterior distribution.
> Represents all information on S given the realization of B = b.

» Complete solution to the inverse problem in Bayesian Inference

Felix Lucka
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
Piike(b]s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior(S)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule: ppost(s|b)

4. Exploit a-posteriori information by infering point estimates:
1. Maximum a-posteriori-estimate (MAP): Suap 1= argmaXx,cgn Ppost(s|b).
Practically: High-dimensional optimization problem.
2. Conditional mean-estimate (CM): 5cv := E [s|b] =[5, S Ppost(s|b)ds.
Practically: High-dimensional integration problem.

Felix Lucka
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

16

Felix Lucka
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the
prior used for the inference based on
this data!

Felix Lucka
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the
prior used for the inference based on
this data!

Sds like...

16
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Empirical Bayesian Inference

Sounds like...
Problem: Brain activity is too complex (or our Wi
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the
prior used for the inference based on
this data!

...but can be formulated into a consistent, statistical reasoning by adding a new
dimension of inference: Hyperparameters and hyperpriors.

Top-down construction scheme — Hierarchical Bayesian modeling (HBM).

16

Felix Lucka
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Hierarchical Bayesian Modeling (HBM)

Overview:

» Current trend in all areas of Bayesian inference.

» Flexible framework for the construction and automatic, data-driven
reduction of complex models.

» Different levels for the embedding of qualitative or quantitative a-priori
information.

» Comprises many former methods and offers new ways of inference.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Wanted: A prior promoting focal source activity.

First try:

» Take Gaussian prior with zero mean and covariance s =~ -1d, ~ >0
(Minimum norm estimation).

» Compute MAP or CM estimate (equal)!

Felix Lucka



Example: Hierarchical Bayesian Modeling of Focal Activity

First try: NOT a focal reconstruction.
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Example: Hierarchical Bayesian Modeling of Focal Activity
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What went wrong?

» Gaussian variables = characteristic scale given by variance.
(not scale invariant)

> All sources have variance v = Similar amplitudes are likely.

» —> Focal activity is very unlikely.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:

> Let sources at single locations i have different variances ~;.

> Let the data determine 7 = New level of inference!

» ~ = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:

> Let sources at single locations i have different variances ~;.

> Let the data determine 7 = New level of inference!

» ~ = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.
» Encode focality assumption into hyperprior:
» Focality: Nearby sources should a-priori not be mutually dependent.

> Focality: Most sources silent, few with large amplitude;

> No location preference for activity should be given a priori.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:
> Let sources at single locations i have different variances ~;.
> Let the data determine 7 = New level of inference!
» ~ = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.
» Encode focality assumption into hyperprior:
» ~; should be stochastically independent.

> Focality: Most sources silent, few with large amplitude;

> No location preference for activity should be given a priori.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:
> Let sources at single locations i have different variances ~;.
> Let the data determine 7 = New level of inference!

» ~ = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.

» Encode focality assumption into hyperprior:

» ~; should be stochastically independent.

> Sparsity inducing hyperprior, e.g., inverse gamma distribution.

> No location preference for activity should be given a priori.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:
> Let sources at single locations i have different variances ~;.
> Let the data determine 7 = New level of inference!

» ~ = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.

» Encode focality assumption into hyperprior:

> ~; should be stochastically independent.

> Sparsity inducing hyperprior, e.g., inverse gamma distribution.
> 7 should be equally distributed.

Felix Lucka




Example: Hierarchical Bayesian Modeling of Focal Activity

Full-CM estimate computed via blocked Gibbs MCMC integration, see Calvetti
et al., 2009.




Example: Hierarchical Bayesian Modeling of Focal Activity

Full-MAP estimate computed as in Calvetti et al., 2009.




Example: Hierarchical Bayesian Modeling of Focal Activity

Full-MAP estimate proposed by us (higher posterior probability than former one).
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Studies: Motivation

Tasks for EEG/MEG in presurgical epilepsy diagnosis
> Focal epilepsy is believed to originate from networks of focal sources.

> Active in inter-ictal spikes.

v

Task 1: Determine number of focal sources (multi focal epilepsy?).

Task 2: Determine location and extend of sources.

v

Problems of established inverse methods:
> Depth-Bias: Reconstruction of deeper sources too close to the surface.

> Masking: Near-surface sources “mask" deep-lying ones.

Can hierarchical Bayesian inference do better?
— Systematic examination via simulation studies.

Felix Lucka



Depth Bias Study: Illustration

One source moving into the depth: Minimum norm estimate (MNE).




Depth Bias Study: Illustration

One source moving into the depth: SLORETA.




Depth Bias Study: Illustration

One source moving into the depth: CM for specific HBM.




Depth Bias Study: Illustration

One source moving into the depth: MAP for specific HBM.
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Depth Bias Study: Results

Study:
» Systematic study over 1000 dipoles; random location and orientation.
> Noise level 5%.
» Reconstructions were compared using different performance measures.

» Specific examination of depth bias.

Results of CM and MAP estimates for single sources:
» Good performance in all validation measures.
» Seem to have no depth bias.

» Good approximations to the real current density with respect to orientation,
amplitude and spatial extend.

» MAP estimate yields best results in every examined aspect.

30

Felix Lucka



Masking Study: lllustration

Reference sources.




Masking Study: lllustration
MNE result and reference sources
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Masking Study: lllustration
sLORETA result and reference sources




Masking Study: lllustration
CM result and reference sources




Masking Study: lllustration
MAP result and reference sources
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Masking Study: Results

» Systematic study of 1000 source configurations consisting of one
near-surface and one deep-lying dipole.

» Noise at a noise level of 5%.

» Reconstructions were compared using a new performance measure based on
optimal transport (a Wasserstein metric).

» HBM based MAP and CM estimation yield best results.

36

Felix Lucka



Three Dipoles: MNE







Three Dipoles: MNE, threshold = 50%




Three Dipoles: MNE, threshold = 70%




Three Dipoles: sLORETA




Three Dipoles: sSLORETA, threshold = 30%




Three Dipoles: sSLORETA, threshold = 50%




Three Dipoles: sSLORETA, threshold = 70%




Three Dipoles: CM




Three Dipoles: MAP
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Take Home Messages & Conclusions

General:
> Inverse problems deal with infering information from indirect measurements.
» Inverse problems are ill-posed.
» Bayesian inference is a suitable framework to deal with the ill-posedness.

» Empirical Bayesian inference helps in the absence of proper a-priori
information.

Specific results for EEG/MEG
> Hierarchical Bayesian modeling is a promising framework for EEG/MEG.
» Promising results for deep sources (no depth bias).

» Promising results for challenging multiple source scenarios (no masking).

Felix Lucka
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Thank you
for
your attention!

49
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Software

» Model generation: FSL, CURRY, Tetgen.
» Forward simulation: SimBio.

» Inverse computation: Matlab.

» Volume Visualization: SCIRun.

IRUH 4 4

with BIOM

50
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Studies: Head Model Generation Pipeline
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Studies: Tetrahedron Head Model

» Compartments: Skin, eyes, skull compacta and skull spongiosa, inner brain.
» 512394 FEM nodes and 3176 162 tetrahedra
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Studies: Sensor Configuration

Atrtificial full-coverage EEG sensor cap (134 sensors).
Reason: Exclude effect of insufficient sensor coverage.




Studies: Source Space Nodes

1000 source space nodes based on a regular grid.
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Studies: Source Space Nodes

1000 source space nodes based on a regular grid.
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Neural Generators

Signals derive from the net effect of ionic currents flowing in the dendrites of
neurons during correlated synaptic transmission.

EEG: Extracellular volume currents produced by postsynaptic potentials.
— strongly dependent on tissue's conductivity.

MEG: Intracellular currents associated with these postsynaptic potentials.

— less dependent on tissue's conductivity.

source: Wikimedia Commons

56

Felix Lucka
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Applications of EEG/MEG

» Main clinical application: Epilepsy, esp.
presurgical diagnosis.

» Main scientific applications:
> Examination tool in cognitive neuroscience.
> Validation of therapeutic approaches in
clinical neuroscience.

57
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Applications of inverse problems

» Biomedial imaging
» Computer vision, machine learning

» Geophysics, oceanography

58

» Remote sensing
» Nondestructive testing

» Astronomy

1480 1490 1500 1510 1520 1530
Sound Speed (m's)

Felix Lucka
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Normal Statistical Inference

Principles of normal statistical inference:

» Make stochastic model for the relation between parameters, data and noise:
B=Ls+¢& b is now random vaiable B

> Infer parameters of interest by a statistical inference strategy, e.g.,
maximum likelihood estimation:
> Compute probability density of B given S = s: pjike(b|s) (likelihood).
> Maximize pjixe(b|s) w.r.t. s: Sy := argmax,crn Plike(b[S)-
> Leads to b = Ls again...

For typical inverse problems:
Doomed to fail, since ill-posed, only accounts for measurement uncertainty.

Felix Lucka
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Example: Gaussian Scale Mixtures for Focal Activity

In formulas:

Do (s17) ~ N(0,5o(%)), where () = diag (- 1ds, i = 1,...., k)
koo K K e 3

thPéf(’Y) = Hp;ryper(’yf) = thyper(%') = H @ 'Yi_a_l exp (_7)
i=1 i=1

i=1 i

o > 0 and 3 > 0 determine shape and scale, '(x) denotes the Gamma function.

Joint prior:  ppr(5,Y) = Pprior (517) Phyper ()

Implicit prior:  ppr(s) = / Perior (S1Y) Phyper (7)dY

= /N(O, >5()) phyper(¥)dy  ~> “Gaussian scale mixture”

60
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Example: Gaussian Scale Mixtures for Focal Activity
Posterior, general:

) Porior(57Y) Phyper(Y)
) Pprior(S)

Ppost (s, Y| b) o< piike(bls
Comparison:  ppost(S|b) o piike(b|s
Posterior, concrete:

Ppost (s, y|b) o

k /1 2
1 *HSI'*H +B
exp (—M”b—l-ﬂg— E (2%4'( +3) Inyi

i=1
Analytical advantages...

> Energy is quadratic with respect to s

» Factorizes over 7;'s
and disadvantages...

> Energy is non-convex w.r.t. (s,~) (posterior is multimodal)

Felix Lucka
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Full-, Semi-, and Approximate Inversion

Two types of parameters — more possible ways of inference.

Full-MAP:
Full-CM:
~v-MAP:

S-MAP:
VB:

Maximize ppost(s,y|b) w.r.t. s and ~.
Integrate ppost(s,y|b) w.r.t. s and ~.

Integrate ppost(s,y|b) w.r.t. s, and maximize over ~, first.
Then use ppost(s,¥(b)|b) to infer s. (Hyperparameter
MAP/Empirical Bayes)

Integrate ppost(s,y|b) w.r.t. 7, and maximize over s.

Assume approximative factorization
Ppost (S, Y| D) & Ppost (5]b) Ppost(7|b); Approximate both with
distributions that are analytically tractable.

Focus of our work: Fully Bayesian inference.

Felix Lucka



What's an inverse problem in general?

Observation
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What's an inverse problem in general?

Observation

Direct problem: Calculate the observable result of a given cause.



What's an inverse problem in general?

Observation

Direct problem: Calculate the observable result of a given cause.

Inverse problem: Reconstruct the cause that led to an observed result.
(More general: Infer information about interesting quantity based on
observation and computational model)



What's an inverse problem in general?

Observation

Direct problem: Calculate the observable result of a given cause.
Inverse problem: Reconstruct the cause that led to an observed result.
(More general: Infer information about interesting quantity based on
observation and computational model)
Solving the inverse problem necessitates modeling and solving the direct problem
(— rest of the IBB work group)



