

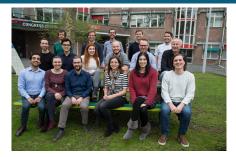
Challenges of Mathematical Image Reconstruction

Felix Lucka

DIAMANT symposium Eindhoven 4 April 2019

Introduction and Overview

Computational Imaging @ CWI

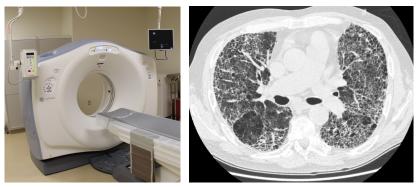


- headed by **Joost Batenburg**, 18 members
- mathematics, computer science & (medical) physics
- advanced computational techniques for 3D imaging
- (inter-)national collaborations from science, industry & medicine
- one of the two main developers of the ASTRA Toolbox
- FleX-ray Lab: custom-made, fully-automated X-ray CT scanner linked to large-scale computing hardware

X-ray Computed Tomography (CT)

- X-rays (high-energy photons) get attenuated by matter
- 3D attenuation image computed from different 2D projections

X-ray Computed Tomography (CT)



(a) Modern CT scanner

(b) CT scan of a patient's lung

Source: Wikimedia Commons

Imaging Across Disciplines

Observational astronomy

Life and material science microscopy

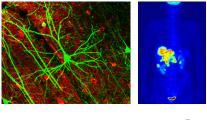
Medical imaging CT, MRI, PET, SPECT, US...

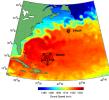
Geophysical imaging (electrical) resistivity, seismic (ground-penetrating) radar, ...

Remote sensing

earth science, military & intelligence

Industrial process imaging





Source: Wikimedia Commons

Imaging Across Disciplines

Observational astronomy

Life and material science microscopy

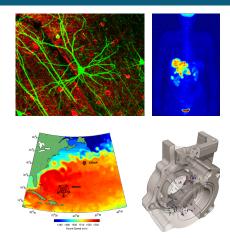
Medical imaging CT, MRI, PET, SPECT, US...

Geophysical imaging (electrical) resistivity, seismic (ground-penetrating) radar, ...

Remote sensing

earth science, military & intelligence

Industrial process imaging



Source: Wikimedia Commons

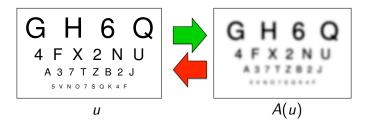
Mathematical Imaging: *Reconstruct spatially distributed of quantities of interest from indirect observations through algorithms derived from rigorous mathematics.*

Inverse problem: Given data f recover unknowns u (image) from

$$f=A(u)+\varepsilon$$

• Forward operator A solution of PDE modelling underlying physics.

Imaging: An Inverse Problem

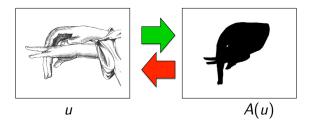


Inverse problem: Given data f recover unknowns u (image) from

$$f=A(u)+\varepsilon$$

- Forward operator A solution of PDE modelling underlying physics.
- Typical inverse problems are **ill-posed**.

Imaging: An Inverse Problem



Inverse problem: Given data f recover unknowns u (image) from

$$f = A(u) + \varepsilon$$

- Forward operator A solution of PDE modelling underlying physics.
- Typical inverse problems are **ill-posed**.
- Stable solution requires **a-priori information** on *u*.

Inverse Problems / Imaging Workflow

mathematical modeling

physics, PDEs, approximations

theoretical analysis

uniqueness, recovery conditions, stability

reconstruction/inference approach

regularization, statistical inference, machine learning

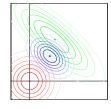
reconstruction algorithm

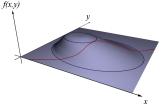
numerical linear algebra, PDEs, optimization, MCMC

large-scale computing parallel computing, GPU computing

$$(s \cdot \nabla + \mu_s(x) + \mu_s(x)) \phi(x, s)$$

= $q(x, s) + \mu_s(x) \int \Theta(s, s') \phi(x, s') ds'$





core development for new modalities:

hybrid imaging

more from more: multi-spectral, multi-modal, high resolution

same from less: low-dose, limited-view, compressed, dynamic

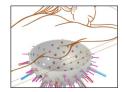
break the routine:

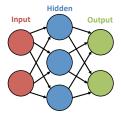
real-time, dose adaptation, zooming

uncertainty quantification & quantitative imaging

machine learning:

embedding, networks for 3D/4D, clinical training data





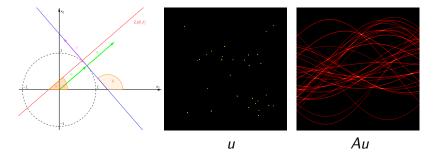
X-ray Computed Tomography

Mathematics of X-ray Computed Tomography (CT)

Beer-Lambert's law: Intensity of monochromatic ray passing through heterogeneous medium described by $\log (I_1/I_0) = -\int_I u(x) dx$.

 \rightarrow integral geometry problem, A reduces to Radon transform:

$$f(\theta,t) = \int_{L(\theta,t)} u(x) dx, \quad L(\theta,t) = \{x \in \mathbb{R} \mid x_1 \cos(\theta) + x_2 \sin(\theta) = t\}$$



Felix.Lucka@cwi.nl

Mathematical Image Reconstruction

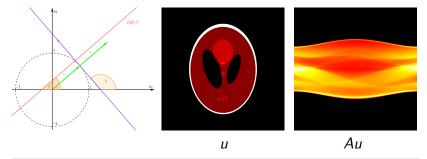
4 April 2019

Mathematics of X-ray Computed Tomography (CT)

Beer-Lambert's law: Intensity of monochromatic ray passing through heterogeneous medium described by $\log (I_1/I_0) = -\int_I u(x) dx$.

 \rightarrow integral geometry problem, A reduces to Radon transform:

$$f(\theta,t) = \int_{L(\theta,t)} u(x) dx, \quad L(\theta,t) = \{x \in \mathbb{R} \mid x_1 \cos(\theta) + x_2 \sin(\theta) = t\}$$



Felix.Lucka@cwi.nl

Mathematical Image Reconstruction

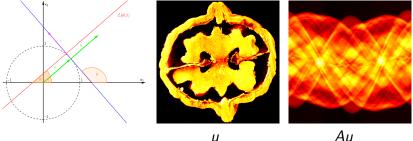
4 April 2019

Mathematics of X-ray Computed Tomography (CT)

Beer-Lambert's law: Intensity of monochromatic ray passing through heterogeneous medium described by $\log (I_1/I_0) = -\int_I u(x) dx$.

 \rightarrow integral geometry problem, A reduces to Radon transform:

$$f(\theta,t) = \int_{L(\theta,t)} u(x) dx, \quad L(\theta,t) = \{x \in \mathbb{R} \mid x_1 \cos(\theta) + x_2 \sin(\theta) = t\}$$



и

Mathematical Image Reconstruction

4 April 2019

$$f = Au + \varepsilon$$

Analytical - determine A^{-1} , regularize it, discretize it

$$\hat{u} = A^* \mathcal{H} f$$
 (filtered backprojection - FBP)

- $\checkmark\,$ efficient to implement and execute
 - ! lack of flexibility for unconventional scanning set-ups
 - ! severe artifacts for limited / sparse projection data
 - ! hard to introduce a-priori knowledge

$$f = Au + \varepsilon$$

Analytical - determine A^{-1} , regularize it, discretize it

Algebraic / variational - discretize and optimize via iterative scheme

$$\hat{u}_{\lambda} = \operatorname*{argmin}_{u \in \mathcal{U}} \left\{ \frac{1}{2} \|Au - f\|_{2}^{2} + \lambda \mathcal{J}(u) \right\}$$

- ! higher computational cost
- \checkmark highly flexible, arbitrary geometries
- $\checkmark\,$ less artifacts for limited / sparse projection data
- $\checkmark\,$ introduction of a-priori knowledge possible

$$f = Au + \varepsilon$$

Analytical - determine A^{-1} , regularize it, discretize it Algebraic / variational - discretize and optimize via iterative scheme Bayesian / statistical - explicit uncertainty modeling

$$p_{post}(u|f) = \frac{p_{like}(f|u)p_{prior}(u)}{p(f)}$$

- ! ! even higher computational cost
- $\checkmark\,$ rigorous assessment of solution's uncertainties

$$f = Au + \varepsilon$$

Analytical - determine A^{-1} , regularize it, discretize it

Algebraic / variational - discretize and optimize via iterative scheme Bayesian / statistical - explicit uncertainty modeling

Deep learning - improve everything by trained DNNs

- $\checkmark\,$ extremely promising
- $\checkmark\,$ can be fast
 - ! not well understood (yet)
 - ! training data

Illustration of Different Reconstruction Methods

(a) true image

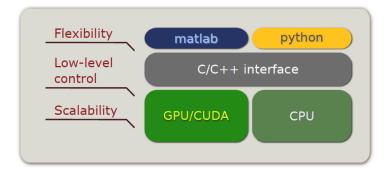
(c) ART

(b) FBP

(e) TV regularization

ASTRA Toolbox

- open source software, developed by CWI and Univ. Antwerp
- provides scalable, high-performance GPU primitives for tomography
- flexible with respect to projection geometry
- featured in the NVIDIA CLARA Platform



www.astra-toolbox.com

Approximate function v = G(u) by neuronal network G_{θ} :

• G₀: composition of many computational units (layers)

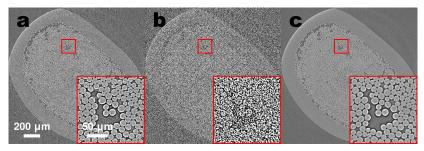
• layers:
$$y = \sigma (Wx + b)$$

- W is convolution: convolutional neuronal network (CNN)
- θ : all free parameters
- learning: from training set $\{(u_i, v_i)\}_{i=1}^m$

$$\hat{ heta} = \operatorname*{argmin}_{ heta \in \Theta} \left\{ \sum_{i}^{m} Loss\left(\mathcal{G}_{ heta}(u_i), v_i
ight) + \lambda \mathcal{J}(heta)
ight\}$$

• (stochastic) gradients via **backpropagation & automatic** differentiation

DNN for Removal of FBP Artefacts



2560x2560 tomography images of fiber composite. *Left*: 1024 projections, *middle/right*: 128 projections

Pelt, Batenburg, Sethian, 2018. Improving Tomographic Reconstruction from Limited Data Using Mixed-Scale Dense Convolutional Neural Networks, *Journal of Imaging 4 (11), 128.*

Pelt, Sethian, 2018. Mixed-scale dense network for image analysis, *PNAS* 115 (2) 254-259.

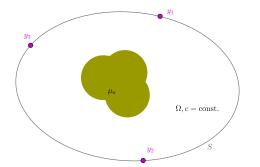
Photoacoustic and Ultrasound Tomography

Photoacoustic Imaging: Physical Principles

Optical Part

Acoustic Part

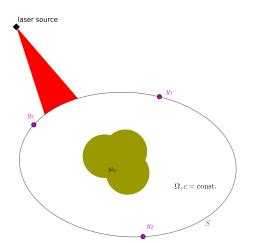
optical absorption coefficient: μ_a



Optical Part

Acoustic Part

optical absorption coefficient: μ_a pulsed laser excitation: Φ



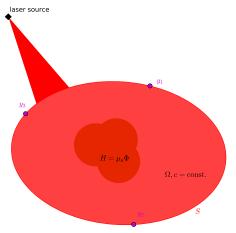
Optical Part

Acoustic Part

optical absorption coefficient: μ_a

pulsed laser excitation: Φ

thermalization by chromophores: $H = \mu_a \Phi$



Optical Part

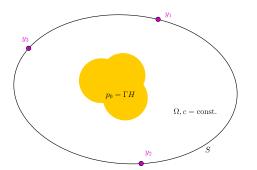
Acoustic Part

optical absorption coefficient: μ_a

pulsed laser excitation: Φ

thermalization by chromophores: $H = \mu_a \Phi$

local pressure increase: $p_0 = \Gamma H$



Optical Part

optical absorption coefficient: μ_a

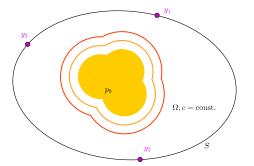
pulsed laser excitation: Φ

thermalization by chromophores: $H = \mu_a \Phi$

Acoustic Part

local pressure increase: $p_0 = \Gamma H$

elastic wave propagation: p(x, t)



Optical Part

optical absorption coefficient: μ_a

pulsed laser excitation: Φ

thermalization by chromophores: $H = \mu_a \Phi$

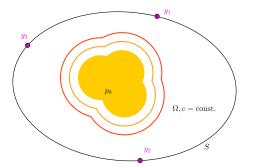
Acoustic Part

local pressure increase: $p_0 = \Gamma H$

elastic wave propagation: p(x, t)

measurement of pressure time courses:

 $f_i(t) = p(y_i, t)$



Optical Part

optical absorption coefficient: μ_a

pulsed laser excitation: Φ

thermalization by chromophores: $H = \mu_a \Phi$

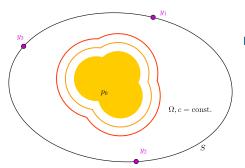
Acoustic Part

local pressure increase: $p_0 = \Gamma H$

elastic wave propagation: p(x, t)

measurement of pressure time courses:

 $f_i(t) = p(y_i, t)$



Photoacoustic effect

- **coupling** of optical and acoustic modalities.
- "hybrid imaging"
- high optical contrast sensed by high-resolution ultrasound.

Photoacoustic Tomography: Mathematical Formulation

(stationary) radiative transport equation (RTE)

$$(s \cdot \nabla + \mu_s(x) + \mu_s(x))\phi(x,s) = q(x,s) + \mu_s(x)\int \Theta(s,s')\phi(x,s')ds',$$

coupled with acoustic wave equation

$$p(x, t = 0) = p_0 := \Gamma(x)\mu_a(x) \int \phi(x, s)ds, \qquad \partial_t p(x, t = 0) = 0$$
$$(c(x)^{-2}\partial_t^2 - \Delta)p(x, t) = 0, \qquad \qquad f = Sp|_{\mathsf{M} \times [0, T]}$$

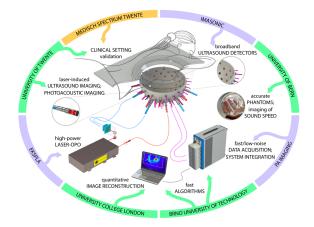
Hybrid inverse problem:

- $\checkmark\,$ acoustic initial value problem with boundary data
- \checkmark optical parameter identification problem with internal data
- vs. diffuse optical tomography (DOT):
 - ! optical parameter identification problem with boundary data

Photoacoustic Tomography: Applications

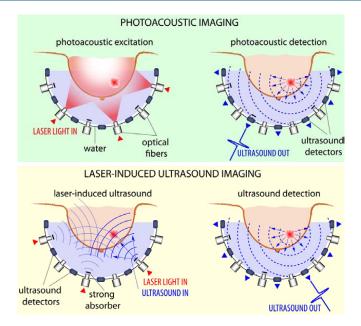
- High contrast for light-absorbing structures in soft tissue.
- Gap between oxygenated and deoxygenated blood.
- Different wavelengths allow quantitative spectroscopic examinations.
- Use of contrast agents for molecular imaging.
- Extremely promising future imaging technique!

H2020 Project: Photoacoustic Mammography Scanner



- Real-time photoacoustic imaging
- Multi-modal: joint ultrasound CT (USCT) and PA imaging.
- Multi-spectal: quantitative sO₂ imaging.

H2020 Project: Photoacoustic Mammography Scanner



3D Wave Propagation Methods for PAT and USCT

k-space pseudospectral time domain method:

B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields, *Journal of Biomedical Optics.*

derivation and discretization of adjoint PAT operator A^* :

Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator in Photoacoustic Tomography, *Inverse Problems 32(11)*.

approximation via deep learning:

Hauptmann, Cox, L, Huynh, Betcke, Beard, Arridge, 2018. Approximate k-space models and Deep Learning for fast photoacoustic reconstruction, *MLMIR 2018*.

$$(s \cdot \nabla + \mu_a + \mu_s) \phi(x, s) = q + \mu_s \int \Theta(s, s') \phi(x, s') ds', \quad \Phi(x) = \int \phi(x, s) ds$$

! $(x, s) \in \mathbb{R}^5 \rightsquigarrow$ direct FEM infeasible.

Diffusion approximation:

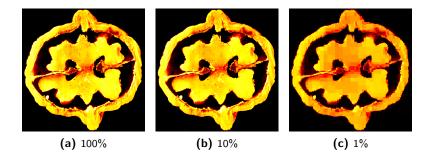
$$(\mu_a - \nabla \cdot \kappa(x) \nabla) \Phi(x) = \int q(x,s) ds, \quad \kappa = \frac{1}{3(\mu_a + \mu_s(1-g))}$$

Schweiger, Arridge, 2014. The Toast++ software suite for forward and inverse modeling in optical tomography, *Journal of Biomedical Optics*.

Alternative: GPU-based Monte Carlo estimate of transport density

Compressed Sensing and Dynamic Imaging

Sparsity & Compressed Sensing



- sparsity traditionally used for compression of Nyquist data.
- Nyquist sampling: too much time/radiation!
- directly sense non-redundant information? \rightarrow compressed sensing

Beat Nyquist for objects with **low spatio-temporal complexity** by **incoherent sub-sampling**,

$$f^c = Cf = C(Au + \varepsilon)$$

combined with **sparsity-constrained variational image reconstruction**:

$$\hat{u}_{\lambda} = \operatorname*{argmin}_{u \in \mathcal{U}} \left\{ \frac{1}{2} \left\| CAu - f \right\|_{2}^{2} + \lambda \mathcal{J}(u) \right\}$$

- ! Development of novel acquisition systems.
- ! Iterative, first-order methods for non-smooth optimization.
- ! Matrix-free implementation of A, A^* .

Accelerated 3D PAT via Compressed Sensing

- $\checkmark\,$ development of compressed sensing PAT scanners
- \checkmark implementation of sparse regularization schemes
- $\checkmark\,$ realistic simulated, experimental and *in-vivo* data
- ✓ significant acceleration with minor loss of quality
- ✓ further improvement through deep learning

Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang, 2016. Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing, *PMB*.

Hauptmann, L, Betcke, Huynh, Adler, Cox, Beard, Ourselin, Arridge, 2018. Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography, *IEEE-TMI*. Dynamic compressed sensing:

 $f_t^c = C_t f_t = C_t (Au_t + \varepsilon_t)$

Limitations of frame-by-frame \longrightarrow

full data 16x acc. (6.25%)

Dynamic compressed sensing:

 $f_t^c = C_t f_t = C_t (Au_t + \varepsilon_t)$

Limitations of frame-by-frame \longrightarrow

Spatio-temporal image reconstruction: full data 16x acc. (6.25%)

Parametric models (shift, stretch, etc.): simple and nice if applicable.

Non-parametric models, e.g., spatio-temporal variational schemes:

$$\hat{u} = \underset{u \in \mathcal{U}}{\operatorname{argmin}} \left\{ \sum_{t}^{T} \frac{1}{2} \| C_{t} A u_{t} - f_{t}^{c} \|_{2}^{2} + \lambda \mathcal{R}(u) \right\}$$

- space-time decomposition (structured low-rank)
- more sophisticated: joint reconstruction of image and dynamics.

Dynamic compressed sensing:

 $f_t^c = C_t f_t = C_t (Au_t + \varepsilon_t)$

Limitations of frame-by-frame \longrightarrow

full data 16x acc. (6.25%)

$$(\hat{u}, \hat{v}) = \operatorname{argmin}_{u \in \mathcal{U}, v \in \mathcal{V}} \left\{ \sum_{t}^{T} \frac{1}{2} \left\| C_{t} A u_{t} - f_{t}^{c} \right\|_{2}^{2} + \alpha \mathcal{J}(u_{t}) + \beta \mathcal{H}(v_{t}) + \gamma \mathcal{S}(u, v) \right\}$$

S(u, v) enforces PDE model of dynamics, e.g., optical flow equation:

$$\partial_t u(x,t) + (\nabla_x u(x,t)) v(x,t) = 0$$

Burger, Dirks, Schönlieb, 2018. A Variational Model for Joint Motion Estimation and Image Reconstruction, .

Dynamic Compressed Sensing with Optical Flow Constraints

X maxIP

Y maxIP

Z maxIP

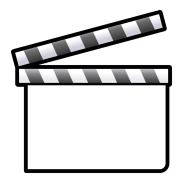
full data, TV-fbf 16x, TV-fbf 16x, TVTVL2

✓ Proof-of-concept for 4D CS PAT data.

! High dimensional, non-smooth, bi-convex optimization problem.

L, Huynh, Betcke, Zhang, Beard, Cox, Arridge, 2018. Enhancing Compressed Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation, SIAM Journal on Imaging Sciences 11:4, 2224-2253.

Dynamic Compressed Sensing with Deep Learning



Hauptmann, Arridge, L, Muthurangu, Steeden, 2018. Realtime cardiovascular MR with spatiotemporal artifact suppression using deep learning - proof of concept in congenital heart disease, *Magnetic Resonance in Medicine.*

Summary

- imaging has broad range of applications
- mathematically: **inverse problem** of reconstructing distributed quantities from indirect observations
- stable solution requires a-priori information
- mathematical modeling, (solving) PDEs, numerical optimization
- 3D: high performance computing
- compressed sensing and dynamic/spectral imaging
- hot topic: deep learning

- imaging has broad range of applications
- mathematically: **inverse problem** of reconstructing distributed quantities from indirect observations
- stable solution requires a-priori information
- mathematical modeling, (solving) PDEs, numerical optimization
- 3D: high performance computing
- compressed sensing and dynamic/spectral imaging
- hot topic: deep learning

Thank you for your attention!

- Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator in Photoacoustic Tomography, *Inverse Problems 32(11)*.
- Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang, 2016. Accelerated High-Resolution Photoacoustic Tomography via Compressed Sensing, *PMB 61(24)*.
- Hauptmann, L, Betcke, Huynh, Adler, Cox, Beard, Ourselin, Arridge, 2018. Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography, *IEEE-TMI 37(6)*.

- L, Huynh, Betcke, Zhang, Beard, Cox, Arridge, 2018. Enhancing Compressed Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation, SIAM-IS 11(4).

Hauptmann, Arridge, L, Muthurangu, Steeden, 2018. Realtime cardiovascular MR with spatiotemporal artifact suppression using deep learning - proof of concept in congenital heart disease, *Magnetic Resonance in Medicine*.