
Challenges of Mathematical Image Reconstruction

Felix Lucka

DIAMANT symposium

Eindhoven

4 April 2019



Introduction and Overview



Computational Imaging @ CWI

• headed by Joost Batenburg, 18 members

• mathematics, computer science & (medical) physics

• advanced computational techniques for 3D imaging

• (inter-)national collaborations from science, industry & medicine

• one of the two main developers of the ASTRA Toolbox

• FleX-ray Lab: custom-made, fully-automated X-ray CT scanner

linked to large-scale computing hardware
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X-ray Computed Tomography (CT)

• X-rays (high-energy photons) get attenuated by matter

• 3D attenuation image computed from different 2D projections
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X-ray Computed Tomography (CT)

(a) Modern CT scanner (b) CT scan of a patient’s lung

Source: Wikimedia Commons
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Imaging Across Disciplines

Observational astronomy

Life and material science

microscopy

Medical imaging

CT, MRI, PET, SPECT, US...

Geophysical imaging

(electrical) resistivity, seismic

(ground-penetrating) radar, ...

Remote sensing

earth science, military & intelligence

Industrial process imaging
Source: Wikimedia Commons

Mathematical Imaging: Reconstruct spatially distributed of quantities

of interest from indirect observations through algorithms derived from

rigorous mathematics.
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Imaging: An Inverse Problem

Inverse problem: Given data f recover unknowns u (image) from

f = A(u) + ε

• Forward operator A solution of PDE modelling underlying physics.

• Typical inverse problems are ill-posed.

• Stable solution requires a-priori information on u.
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Inverse Problems / Imaging Workflow

mathematical modeling

physics, PDEs, approximations

theoretical analysis

uniqueness, recovery conditions,

stability

reconstruction/inference approach

regularization, statistical inference,

machine learning

reconstruction algorithm

numerical linear algebra, PDEs,

optimization, MCMC

large-scale computing

parallel computing, GPU computing

(s · ∇+ µa(x) + µs(x))φ(x , s)

= q(x , s)+µs(x)

∫
Θ(s, s ′)φ(x , s ′)ds ′
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Current Challenges in Computational Imaging

core development for new modalities:

hybrid imaging

more from more:

multi-spectral, multi-modal, high resolution

same from less:

low-dose, limited-view, compressed, dynamic

break the routine:

real-time, dose adaptation, zooming

uncertainty quantification & quantitative imaging

machine learning:

embedding, networks for 3D/4D, clinical training data

Input	
Hidden	

Output	



X-ray Computed Tomography



Mathematics of X-ray Computed Tomography (CT)

Beer-Lambert’s law: Intensity of monochromatic ray passing through

heterogeneous medium described by log (I1/I0) = −
∫
l
u(x)dx .

→ integral geometry problem, A reduces to Radon transform:

f (θ, t) =

∫
L(θ,t)

u(x)dx , L(θ, t) = {x ∈ R | x1 cos(θ) + x2 sin(θ) = t}

u Au
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Image Reconstruction Approaches

f = Au + ε

Analytical - determine A−1, regularize it, discretize it

û = A∗Hf (filtered backprojection − FBP)

X efficient to implement and execute

! lack of flexibility for unconventional scanning set-ups

! severe artifacts for limited / sparse projection data

! hard to introduce a-priori knowledge
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Image Reconstruction Approaches

f = Au + ε

Analytical - determine A−1, regularize it, discretize it

Algebraic / variational - discretize and optimize via iterative scheme

ûλ = argmin
u∈U

{
1
2 ‖Au − f ‖2

2 + λJ (u)
}

! higher computational cost

X highly flexible, arbitrary geometries

X less artifacts for limited / sparse projection data

X introduction of a-priori knowledge possible
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Image Reconstruction Approaches

f = Au + ε

Analytical - determine A−1, regularize it, discretize it

Algebraic / variational - discretize and optimize via iterative scheme

Bayesian / statistical - explicit uncertainty modeling

ppost(u|f ) =
plike(f |u)pprior (u)

p(f )

! ! even higher computational cost

X rigorous assessment of solution’s uncertainties

Felix.Lucka@cwi.nl Mathematical Image Reconstruction 4 April 2019



Image Reconstruction Approaches

f = Au + ε

Analytical - determine A−1, regularize it, discretize it

Algebraic / variational - discretize and optimize via iterative scheme

Bayesian / statistical - explicit uncertainty modeling

Deep learning - improve everything by trained DNNs

X extremely promising

X can be fast

! not well understood (yet)

! training data
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Illustration of Different Reconstruction Methods

(a) true image (b) FBP

(c) ART (d) SIRT (e) TV regularization



ASTRA Toolbox

• open source software, developed by CWI and Univ. Antwerp

• provides scalable, high-performance GPU primitives for tomography

• flexible with respect to projection geometry

• featured in the NVIDIA CLARA Platform

www.astra-toolbox.com

www.astra-toolbox.com


Deep Learning with Convolutional Neuronal Networks

Approximate function v = G (u) by neuronal network Gθ:

• Gθ: composition of many computational units (layers)

• layers: y = σ (Wx + b)

• W is convolution: convolutional neuronal network (CNN)

• θ: all free parameters

• learning: from training set {(ui , vi )}mi=1

θ̂ = argmin
θ∈Θ

{
m∑
i

Loss (Gθ(ui ), vi ) + λJ (θ)

}
• (stochastic) gradients via backpropagation & automatic

differentiation
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DNN for Removal of FBP Artefacts

2560x2560 tomography images of fiber composite.

Left: 1024 projections, middle/right: 128 projections

Pelt, Batenburg, Sethian, 2018. Improving Tomographic Reconstruction

from Limited Data Using Mixed-Scale Dense Convolutional Neural

Networks, Journal of Imaging 4 (11), 128.

Pelt, Sethian, 2018. Mixed-scale dense network for image analysis, PNAS

115 (2) 254-259.



Photoacoustic and Ultrasound

Tomography



Photoacoustic Imaging: Physical Principles

Optical Part

optical absorption coefficient: µa

Acoustic Part
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Photoacoustic Tomography: Physical Principles

Optical Part

optical absorption coefficient: µa

pulsed laser excitation: Φ

thermalization by chromophores: H = µaΦ

Acoustic Part

local pressure increase: p0 = ΓH

elastic wave propagation: p(x , t)

measurement of pressure time courses:

fi (t) = p(yi , t)

Photoacoustic effect

• coupling of optical and acoustic

modalities.

• ”hybrid imaging”

• high optical contrast sensed by

high-resolution ultrasound.



Photoacoustic Tomography: Mathematical Formulation

(stationary) radiative transport equation (RTE)

(s · ∇+ µa(x) + µs(x))φ(x , s) = q(x , s) + µs(x)

∫
Θ(s, s ′)φ(x , s ′)ds ′,

coupled with acoustic wave equation

p(x , t = 0) = p0 := Γ(x)µa(x)

∫
φ(x , s)ds, ∂tp(x , t = 0) = 0

(c(x)−2∂2
t −∆)p(x , t) = 0, f = Sp|M×[0,T ]

Hybrid inverse problem:

X acoustic initial value problem with boundary data

X optical parameter identification problem with internal data

vs. diffuse optical tomography (DOT):

! optical parameter identification problem with boundary data



Photoacoustic Tomography: Applications

• High contrast for light-absorbing structures in soft tissue.

• Gap between oxygenated and deoxygenated blood.

• Different wavelengths allow quantitative spectroscopic

examinations.

• Use of contrast agents for molecular imaging.

• Extremely promising future imaging technique!
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H2020 Project: Photoacoustic Mammography Scanner

• Real-time photoacoustic imaging

• Multi-modal: joint ultrasound CT (USCT) and PA imaging.

• Multi-spectal: quantitative sO2 imaging.



H2020 Project: Photoacoustic Mammography Scanner



3D Wave Propagation Methods for PAT and USCT

k-space pseudospectral time domain method:

B. Treeby and B. Cox, 2010. k-Wave:

MATLAB toolbox for the simulation and

reconstruction of photoacoustic wave fields,

Journal of Biomedical Optics.

derivation and discretization of adjoint PAT operator A∗:

Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator

in Photoacoustic Tomography, Inverse Problems 32(11).

approximation via deep learning:

Hauptmann, Cox, L, Huynh, Betcke, Beard, Arridge, 2018.

Approximate k-space models and Deep Learning for fast

photoacoustic reconstruction, MLMIR 2018.



Radiative Transport Equation in 3D

(s · ∇+ µa + µs)φ(x , s) = q+µs

∫
Θ(s, s ′)φ(x , s ′)ds ′, Φ(x) =

∫
φ(x , s)ds

! (x , s) ∈ R5  direct FEM infeasible.

Diffusion approximation:

(µa −∇ · κ(x)∇) Φ(x) =

∫
q(x , s)ds, κ =

1

3(µa + µs(1− g))

Schweiger, Arridge, 2014. The Toast++ software suite for forward and

inverse modeling in optical tomography, Journal of Biomedical Optics.

Alternative: GPU-based Monte Carlo estimate of transport density



Compressed Sensing and

Dynamic Imaging



Sparsity & Compressed Sensing

(a) 100% (b) 10% (c) 1%

• sparsity traditionally used for compression of Nyquist data.

• Nyquist sampling: too much time/radiation!

• directly sense non-redundant information? → compressed sensing
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Accelerated Imaging via Compressed Sensing

Beat Nyquist for objects with low spatio-temporal

complexity by incoherent sub-sampling,

f c = Cf = C (Au + ε)

combined with sparsity-constrained variational image

reconstruction:

ûλ = argmin
u∈U

{
1
2 ‖CAu − f ‖2

2 + λJ (u)
}

! Development of novel acquisition systems.

! Iterative, first-order methods for non-smooth optimization.

! Matrix-free implementation of A, A∗.



Accelerated 3D PAT via Compressed Sensing

X development of compressed sensing PAT scanners

X implementation of sparse regularization schemes

X realistic simulated, experimental and in-vivo data

X significant acceleration with minor loss of quality

X further improvement through deep learning

Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang, 2016. Accelerated

High-Resolution Photoacoustic Tomography via Compressed Sensing, PMB.

Hauptmann, L, Betcke, Huynh, Adler, Cox, Beard, Ourselin, Arridge, 2018.

Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic

Tomography, IEEE-TMI.



Spatio-Temporal Reconstruction: 4D PAT

Dynamic compressed sensing:

f c
t = Ct ft = Ct(Aut + εt)

Limitations of frame-by-frame −→

full data 16x acc. (6.25%)



Spatio-Temporal Reconstruction: 4D PAT

Dynamic compressed sensing:

f c
t = Ct ft = Ct(Aut + εt)

Limitations of frame-by-frame −→

full data 16x acc. (6.25%)Spatio-temporal image reconstruction:

Parametric models (shift, stretch, etc.): simple and nice if applicable.

Non-parametric models, e.g., spatio-temporal variational schemes:

û = argmin
u∈U

{
T∑
t

1

2
‖CtA ut − f c

t ‖
2
2 + λR(u)

}
• space-time decomposition (structured low-rank)

• more sophisticated: joint reconstruction of image and dynamics.



Spatio-Temporal Reconstruction: 4D PAT

Dynamic compressed sensing:

f c
t = Ct ft = Ct(Aut + εt)

Limitations of frame-by-frame −→

full data 16x acc. (6.25%)

(û, v̂) = argmin
u∈U,v∈V

{
T∑
t

1

2
‖CtA ut − f c

t ‖
2
2 +αJ (ut) +βH(vt) +γS(u, v)

}

S(u, v) enforces PDE model of dynamics, e.g., optical flow equation:

∂tu(x , t) + (∇xu(x , t)) v(x , t) = 0

Burger, Dirks, Schönlieb, 2018. A Variational Model for Joint Motion

Estimation and Image Reconstruction, .



Dynamic Compressed Sensing with Optical Flow Constraints

full data, TV-fbf 16x, TV-fbf 16x, TVTVL2

X maxIP

Y maxIP

Z maxIP

X Proof-of-concept for 4D CS PAT data.

! High dimensional, non-smooth, bi-convex optimization problem.

L, Huynh, Betcke, Zhang, Beard, Cox, Arridge, 2018. Enhancing Compressed

Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation,

SIAM Journal on Imaging Sciences 11:4, 2224-2253.



Dynamic Compressed Sensing with Deep Learning

Hauptmann, Arridge, L, Muthurangu, Steeden, 2018. Realtime

cardiovascular MR with spatiotemporal artifact suppression using deep

learning - proof of concept in congenital heart disease, Magnetic

Resonance in Medicine.
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Summary

• imaging has broad range of applications

• mathematically: inverse problem of reconstructing distributed

quantities from indirect observations

• stable solution requires a-priori information

• mathematical modeling, (solving) PDEs, numerical optimization

• 3D: high performance computing

• compressed sensing and dynamic/spectral imaging

• hot topic: deep learning

Thank you for your attention!
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