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Sparsity Constraints in Inverse Problems

Current trend in high dimensional inverse problems: Sparsity constraints.

I Total Variation (TV) imaging: Sparsity constraints on the gradient of the
unknowns.

I Compressed Sensing: High quality reconstructions from a small amount of
data, if a sparse basis/dictionary is a-priori known (e.g., wavelets).

Send	  me	  your	  best	  
TV	  image!	  

felix.lucka@wwu.de	  

Send	  me	  your	  best	  
CS	  image!	  

felix.lucka@wwu.de	  
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Sparsity Constraints in Variational Regularization

Commonly applied formulation and analysis by means of variational
regularization, mostly by incorporating L1-type norms:

ûα = argmin
u∈Rn

{
‖f − K u‖2

2 + α |D u|1
}

assuming additive Gaussian i.i.d. noise ∼ N (0, σ2)

Notation:

I f ∈ Rk : The noisy measurement data given

I u ∈ Rn: The unknowns to recover w.r.t. the chosen discretization

I K ∈ Rk×n: Discretization of the forward operator w.r.t. the domains of u
and f .

I D ∈ Rl×n: Discrete formulation of the mapping onto the (potentially)
sparse quantity.

,
,
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Sparsity Constraints in the Bayesian Approach

Sparsity as a-priori information are encoded into the prior distribution pprior (u):

1. Turning the functionals used in variational regularization directly into priors,
e.g., L1-type priors:

I Convenient, as prior is log-concave.
I MAP estimate is sparse, but the prior itself is not sparse.

2. Hierarchical Bayesian modeling: Sparsity is incorporated at a higher level of
the model.

I  Next talk
I Relies on a slightly different concept of sparsity.
I Resulting implicit priors over unknowns are usually not log-concave.

(c) exp
(
− 1

2‖u‖
2
2

)
(d) exp (−|u|1) (e) (1 + u2/3)−2



Likelihood:
exp

(
− 1

2σ2 ‖f − K u‖2
2

)

Prior: exp (−λ |u|1)
(λ via discrepancy principle)

Posterior: exp
(
− 1

2σ2 ‖f − K u‖2
2 − λ |u|1

)
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Reminder: Bayesian Inference and Advanced Techniques

Things we might want to do with the posterior:

I Point estimates: MAP and CM.

I Credible regions estimates

I Extreme value probabilities

I Conditional covariance estimates

I Histogram estimates

I Generalized Bayes estimators

I Marginalization of nuisance parameters
& Approximation error modeling

I Model selection or averaging

I Experiment design

Computationally, this needs

I high-dimensional optimization

I high-dimensional integration

I a mix of both.

,
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Integration-based Inference for Sparse Bayesian Inversion:
How I got into this...

I assisted for the computational parts in (S. Comelli, 2011; A Novel Class of
Priors for Edge-Preserving Methods in Bayesian Inversion) and faced many
problems:

I Standard techniques for high-dimensional integration break down for
ill-posed inverse problems.

I Especially for those with sparsity constraints.

=⇒ Good example to explain and illustrate the computational aspects of
integration-based Bayesian inference1. To do so, this talk uses partial results
from:

F.L., 2012.
Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in
high-dimensional inverse problems using L1-type priors
Inverse Problems (accepted); arXiv:1206.0262v2

1Optimization methods are challenging as well...but you know better about this than me ;-)
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Monte Carlo Integration in a Nutshell

E [f (x)] =

∫
Rn

f (x) p(x) dx

I Traditional Gauss-type quadrature:
Construct suitable grid {xi}i , w.r.t ω(x) := p(x) and approximate by∑K

i=1 ωi f (xi ).
=⇒ Grid construction and evaluation infeasible in high dimensions.

I Monte Carlo integration idea:
Generate suitable grid {xi}i , w.r.t p(x) by drawing xi ∼ p(x) and
approximate by 1

K

∑K
i=1 f (xi ). By the Law of large numbers:

1
K

K∑
i=1

f (xi )
K→∞−→ Ep(x) [f (x)] =

∫
Rn

f (x) p(x) dx

in L1 with rate O(K−1/2) (independent of n).
,
,
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Markov Chain Monte Carlo
Not able to draw independent samples?
 With {xi}i being an ergodic Markov chain, it still works!

Markov chain Monte Carlo (MCMC) methods are algorithms to construct such a
chain:

I Huge number of MCMC methods exists.

I No “universal” method.
I Most methods rely on one two basic schemes:

I Metropolis-Hastings (MH) Sampling [Metropolis et al., 1953; Hastings,
1970]

I Gibbs Sampling [Geman & Geman, 1984]

I Posteriors from inverse problems seem to be “special”.

In this section: Comparison between the most basic variants of MH and Gibbs
sampling for our specific scenario.

,
,
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Symmetric, Random-Walk Metropolis-Hastings Sampling

Given: Density p(x), x ∈ Rn to sample from.
Let ppro(z) be a symmetric density in Rn and x0 ∈ Rn an initial state. Define
burn-in size K0 and sample size K .
For i = 1,. . .,K0 + K do:

1 Draw z from ppro(z) and set y = xi−1 + z

2 Compute the acceptance ratio r =
p(y)

p(xi−1)

3 Draw θ ∈ [0, 1] from a uniform probability density.

4 If r > θ, set xi = y , else set xi = xi−1.

Return xK0+1, . . . , xK .

I Requires one evaluation of p(x) and one sample from ppro per step, no“real”
knowledge about p is needed, not even normalization.
 “Black box” sampling algorithm.

I Most widely used.

I Good performance requires careful tuning of ppro !

I Basis for very sophisticated sampling algorithms.  more later.



In this talk:
ppro = N (0, κ2 In)



Evaluate performance of a sampler via autocorrelation functions (acf):

I Desired: Independent samples of p(x).

I R(τ) ∈ [0, 1] measures the average correlation between samples xi , xi+τ
w.r.t. to a test function.

I A rapid decay of R(τ) =⇒ Samples get uncorrelated fast!

 

 

length = 4
length = 16
length = 32

(a) Stochastic processes...

0

1

 

 

length = 4
length = 16
length = 32

(b) ...and their autocorrelation functions
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Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)

I Model of a charge coupled device (CCD) in 1D.
I Unknown light intensity ũ : [0, 1]→ R+, indicator on [ 1

3
, 2

3
].

I Integrated into k = 30 CCD pixels [ 1
k+2

, k+1
k+2

] ⊂ [0, 1].
I Noise is added.
I ũ is reconstructed on a regular, n-dim. grid.
I D is the forward finite difference operator with NB cond.

ppost(u|f ) ∝ exp

(
− 1

2σ2
‖f − K u‖2

2 − λ |D u|1
)

0 0.2 0.4 0.6 0.8 1

0

1

t

(c) The unknown function ũ(t)
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(d) The measurement data f ,
,
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Performance of the MH Sampler
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MH, λ = 100
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MH, λ = 400

Figure: Autocorrelation plots R(τ) for MH Sampler and n = 63.



Performance of the MH Sampler
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MH−Iso,     n = 127,  λ = 280
 MH−Iso,    n = 255,  λ = 400
MH−Iso,     n = 511,  λ = 560
MH−Iso,     n = 1023, λ = 800

Figure: Temporal autocorrelation plots R∗(t) for MH Sampler.



Single Component Gibbs Sampling

Given: Density p(x), x ∈ Rn to sample from.
Let x0 ∈ Rn be an initial state. Define burn-in size K0 and sample size K .
For i = 1,. . .,K0 + K do:

1 Set xi := xi−1.

2 For j = 1,. . .,n do:
(i) Draw s randomly from {1, . . . , n} (random scan).
(ii) Draw (xi )s from the conditional, 1-dim density p( · |(xi )[−s]).

Return xK0+1, . . . , xK .

In order to be fast one needs to be able

1. to compute the 1-dim distributions fast and explicit.

2. to sample from 1-dim distributions fast, robust and exact.

This requires some explicit computations (in contrast to black-box MH).

Point 2. turned out to be rather nasty, involved and time consuming to
implement for L1-type priors  Details can be found in the paper.





Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)
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Figure: Autocorrelation plots R(τ) for Gibbs Sampler and n = 63.



Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)
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Figure: Temporal autocorrelation plots R∗(t) for n = 63.



Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)
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Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)
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Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)

New sampler can be used to address theoretical questions:

I Lassas & Siltanen, 2004: For λn ∝
√
n + 1, the TV prior converges to a

smoothness prior in the limit n −→∞.

I MH sampling to compute CM estimate for n = 63, 255, 1023, 4095.

I Even after a month of computation time only partly satisfying results.

0 1
0

1 u real
n = 63, K = 500000, K0 = 200, t = 21m   
n = 255, K = 100000, k0 = 50, t = 16m
n = 1023, K = 50000, k0 = 20, t = 45m
n = 4095, K = 10000, k0 = 20, t = 34m
n = 16383, K = 5000, k0 = 20, t = 1h 51m
n = 65535, K = 1000, k0 = 20, t = 3h 26m

Figure: CM estimate computed for n = 63, 255, 1023, 4095, 16383, 65535 using Gibbs
sampler on a comparable CPU.



Image Deblurring Example in 2D

Unknown function ũ Measurement data m
I Gaussian blurring kernel

I Relative noise level of 10%

I Reconstruction using n = 511× 511 = 261 121.
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Image Deblurring Example in 2D

(a) 1h comp. time (b) 5h comp. time (c) 20h comp. time

Figure: CM estimates by MH sampler
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Image Deblurring Example in 2D

(a) 1h comp. time (b) 5h comp. time (c) 20h comp. time

Figure: CM estimates by Gibbs sampler
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Outline
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Iterative Optimization and MCMC Sampling...

...often look very different at first glance:

I Iterative optimization follows a clear and determined path in search space.

I MCMC samplers randomly “stray around like pub crawlers”.

source: Wikimedia Commons ,
,

Felix Lucka (felix.lucka@wwu.de)
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Iterative Optimization and MCMC Sampling...

However, both try to find points that are optimally representative for p(x) in a
computationally efficient way:

I Optimization: {xi}i such that xi → x̂ = argmax p(x) as fast as possible.

I Samplers: {xi}i such that 1
K

∑K
i f (xi )→

∫
f (x)p(x)dx as fast as possible.

“Straying around” is not the main aim of MCMC samplers: There are two types
of randomness in MCMC:

I Markov chain: The unwanted, random-walk-like randomness that we have
to tolerate (but want to get rid off) because we’re not able to draw
independent samples.

I Monte Carlo: The wanted independent-samples-like randomness that leads
to the convergence of the integral.

,
,
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Iterative Optimization and MCMC Sampling: Practical Observations

People that work with both of them realize:

I Both suffers from similar problems, e.g., strong dependencies between single
components.

I Both are only fast if they take the analytical structure of p(x) into account.

I Some algorithms for sampling and optimization are surprisingly similar.
( in the next talk, the only difference is a slight modification of the right
hand side).

I For both of them holds: Algorithms that work well in other areas may fail
for inverse problems.

,
,
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Example: Deterministic and Stochastic Overrelaxation

As an example, consider a Gaussian density p(x) and iterative

1. optimization over conditional single component densities (left image).

2. sampling over conditional single component densities (right image).

Both suffer from strong correlations between single components.
=⇒ This is a natural feature of inverse problems, the compact forward operator

“wraps up and compresses” many dimensions.



Example: Deterministic and Stochastic Overrelaxation

The optimization is the well known Gauss-Seidel solver for linear systems
 Geometric convergence of optimization and Gibbs sampling.



Example: Deterministic and Stochastic Overrelaxation

Successive over-relaxation (SOR) is a technique to counteract the coupling
between components and to increase the convergence rate.

(g) SOR, w = 1 (normal Gauss Seidel) (h) SOR, w = 1.5



Example: Deterministic and Stochastic Overrelaxation
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Figure: SOR error for different values of w .
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Example: Deterministic and Stochastic Overrelaxation

You can use the same idea to accelerate the convergence of Gibbs sampling:

I Adler, 1981. Over-relaxation method for the Monte Carlo evaluation of the
partition function for multiquadradic actions
=⇒ Formulation for Gaussian distributions.

I Neal, 1995. Suppressing Random Walks in Markov Chain Monte Carlo
Using Ordered Overrelaxation
=⇒ Generalization to arbitrary distributions.

In my paper on Gibbs sampling for L1-type priors, ordered over-relaxation is
derived and used.

,
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Example: Deterministic and Stochastic Overrelaxation
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Figure: CM estimate error for different values of w .
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Example: Deterministic and Stochastic Overrelaxation

Using SOR (or other stationary solvers) for
large sparse linear systems:
Outdated due to the conjugate gradient
(CG) method...

...and so is sampling high dimensional
Gaussians with sparse correlation matrix by
Gibbs samplers due CG sampling, see
Schneider and Willsky, 2002 and Parker and
Fox, 2012.

Figure: Conjugate gradient method
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Iterative Optimization and MCMC Sampling: My Conclusion

I Iterative optimization and sampling are not that different.

I MCMC sampling for inverse problems is just far less elaborate up to now.

I There is a lot to learn from optimization to improve sampling.

I Especially to suppress superfluous randomness
−→ Getting rid of the first “MC” in “MCMC“.

I The blindfolded use of “black-box” MCMC sampling may have ruined its
reputation in certain areas.

,
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Outline
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Adaptive Metropolis Hastings Sampling

I Crucial issue for MH performance: Proposal distribution.

I Global adaptation strategies (adaptive Metropolis tune the proposal
distribution to optimize the global acceptance rate.

I Basis: Sampling history.

I Chains are not Markovian anymore, but still ergodic.

I Especially developed for inverse problems.

H. Haario, E. Saksman and J. Tamminen, 2001.
An Adaptive Metropolis Algorithm.

H. Haario, E. Saksman and J. Tamminen, 2005.
Componentwise adaptation for high dimensional MCMC.
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Delayed Rejection Metropolis Hastings Sampling

I Crucial issue for MH performance: Proposal distribution.

I Local adaptation strategies design proposal distributions that locally adapt
to the target distribution.

I Most often used: delayed rejection.

I Can be conbined with global adaptation strategies.

A. Mira, 2001.
On Metropolis-Hastings algorithms with delayed rejection.

H. Haario, M. Laine, A. Mira and E. Saksman, 2006.
DRAM: Efficient adaptive MCMC.
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Delayed Accepetance Metropolis Hastings Sampling

I Large scale non-linear problems come with a high computational cost for
evaluating the forward model.

I Delayed acceptance schemes first “test“ possible new states with a reduced
forward model.

I Only accepted proposals are evaluated with the full model.

I Can be combined with other adaptation strategies.

A.J. Christen and C. Fox, 2005.
MCMC using an Approximation,

T. Cui, C. Fox, M.J. O’Sullivan, 2011.
Bayesian calibration of a large-scale geothermal reservoir model by a new
adaptive delayed acceptance Metropolis Hastings algorithm.
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Parallelization: Naive, Tempering & Interacting

In principle, MCMC algorithms are great for parallelization.

I Naive parallelization: Run independent chains and merge results.

I For ”nice“ samplers and distributions perfect speed up.

I Might show problems for multimodal distributions or strongly
correlated samplers.

I Parallel tempering: Run independent chains at different ”temperatures“ and
swap states.

I Interacting tempering: More complex interactions between chains.

Jun S. Liu. 2008.
Monte Carlo Strategies in Scientific Computing.
Springer Series in Statistics. Springer New York.
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Outline

Exemplary Application: Inverse Problems with Sparsity Constraints
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Take Home Messages I

I Monte Carlo (MC) integration approximates high dimensional integrals by
constructing an integration grid using statistical reasoning.

I Markov Chain Monte Carlo (MCMC) schemes realize MC integration by
constructing suitable Markov chains.

I MCMC techniques rely on two elementary schemes: Metropolis Hastings
(MH) and Gibbs sampling.

I MCMC can be used to compute many quantities in Bayesian inverse
problems.
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Take Home Messages II

I High dimensional inverse problems using sparsity constraints pose specific
challenges for MCMC schemes.

I However, MCMC schemes are not in general slow and scale bad with
increasing dimension.

I The elementary MCMC schemes may show very different performance.

I The dependence on dimension and prior impact is not trivial.

I Inference in every high dimensions is feasible (n > 1 000 000 still works...).

CAUTION!

I These results do not generalize.

I MH and Gibbs sampling have both pro’s and con’s.

I For MH samplers, the right choice of the proposal kernel is essential.

I Especially for MH sampling, there are powerful techniques to increase
performance while preserving the “black-box” property.
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Take Home Messages III

I Iterative optimization and MCMC sampling are not that different.

I Concepts from optimization can be used to speed up sampling.

I Example: Overrelaxation.

For inverse problems, I think that for both optimization and sampling,

I the degenerate nature of the posterior is the main problem.

I tailoring the algorithms to the structure of the posterior is key for good
performance.
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Ongoing Own Work

Use the current L1 Sampler to tackle...

I Real applications: Sparse tomography using Besov space priors like in
[Kolehmainen, Lassas, Niinimäki, Siltanen, 2012]

I Theoretical questions, e.g., of how stair-casing in TV can be seen from a
Bayesian perspective.

Further develop the L1 sampler

I Add adaptive elements

I Comparison to more sophisticated variants of MH schemes.

I Formulation for block-sparse priors, e.g., to apply it to EEG/MEG.

I Generalization to arbitrary D in |Du|1.

I Learn more from optimization methods!
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Thank you for your attention!

Jari Kaipio and Erkki Somersalo. 2005
Statistical and Computational Inverse Problems,

Daniela Calvetti and Erkki Somersalo. 2007.
Introduction to Bayesian Scientific Computing.

Jun S. Liu. 2008.
Monte Carlo Strategies in Scientific Computing.

F. L. , 2012.
Fast Markov chain Monte Carlo sampling for sparse Bayesian inference in
high-dimensional inverse problems using L1-type priors
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