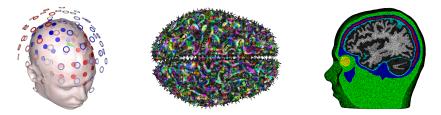


Hierarchical Bayesian Inference for Combined EEG/MEG Source Analysis



Felix Lucka University College London f.lucka@ulc.ac.uk

joint with: Ümit Aydin, Johannes Vorwerk, Martin Burger, Carsten H. Wolters.

BaCI, Utrecht, September 2, 2015.

The Inverse Problem of EEG/MEG Source Reconstruction

$$f = Ls + \varepsilon$$

(current density reconstruction)

- GΗ 6 4 F X 2 N U A 3 7 T Z B 2 J 5 V N O 7 S O K 4 F Unfortunately, not just:
- Under-determined:
 # sensors left # sources
- Severely ill-conditioned, special spatial characteristics.
- Signal is contaminated by a complex spatio-temporal mixture of external and internal noise and nuisance sources.

Measurements alone are insufficient/unsuitable to determine solution!

Inverse modeling: Use a-priori information to solve the inverse problem. Problems:

- ▶ No consensus, not even for "simple" brain activations.
- Very little research on reliable, physiological a-priori knowledge.
- Underestimation of the impact of prior information.

Consequences:

- Confusing zoo of inverse methods.
- A lot of folklore and funny explanations around.

However:

Source reconstruction might (always) be a toolbox, but we can find the best tool for a given task / source scenario in a rigorous, objective way.

Specific source scenario:

- Unknown number of focal sources.
- ► No a-priori information about location.
- May involve deep sources.

Challenges:

- Volume-based discretization of gray matter necessary.
- Deep sources are easily masked by superficial ones.

Examples:

- Presurgical epilepsy diagnosis.
- Functional mapping of the eloquent cortex.
- Early components of evoked potentials

More practical aspects in the upcoming talks!

Relies on Bayesian inversion:

- A priori information is encoded by probability distributions.
- Extend Gaussian prior by flexible, individual source variances γ_i .

- Let the data determine γ_i (hyperparameters).
- Incorporate focality constraints on hyperparameters.

$$p_{prior}(s|\gamma) \propto \prod \exp\left(-rac{(s_{amp})_i^2}{\gamma_i}
ight), \qquad p_{hyper}(\gamma_i) \ \propto \gamma_i^{-(lpha+1)} \exp\left(-rac{eta}{\gamma_i}
ight)$$

Our starting points:

- Calvetti, Hakula, Pursiainen, Somersalo, 2009. Conditionally Gaussian hypermodels for cerebral source localization. SIAM J. Imaging Sci.
- Wipf, Nagarajan, 2009. A unified Bayesian framework for MEG/EEG source imaging. Neuroimage

Similar stuff: Graphical models, general linear models, latent variable models, Variational Bayes, expectation maximization, scale mixture models, empirical priors, parametric empirical Bayes, automatic relevance determination...

Non Convex Intuition Behind HBM

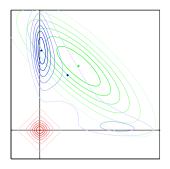
We use fully-Bayesian inference for the posterior:

$$p_{post}(s,\gamma|f) \propto \exp\left(-\frac{1}{2}\|f - Au\|_2^2 - \sum_i^n \left(\frac{(s_{amp})_i^2 + 2\beta}{2\gamma_i} + (\alpha + 1/2)\log(\gamma_i)\right)\right)$$

Implicit prior is a Student's *t*-distribution with $\nu = 2\alpha$, $\theta = \beta/(2\alpha)$:

$$p_{prior}(s) \propto \prod_{i} \left(1 + rac{(s_{ ext{amp}})_{i}^{2}}{
u heta}
ight)^{-rac{
u-1}{2}}$$

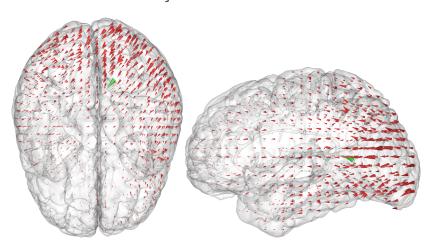
$$\begin{aligned} &-\log p_{\text{post}}(s|f) \propto \\ &\frac{1}{2} \|f - As\|_2^2 + \frac{\nu - 1}{2} \sum_i \log \left(1 + \frac{(s_{\text{amp}})_i^2}{\nu \theta}\right) \end{aligned}$$



Non-convex regularization?! Why would anyone want to do that?

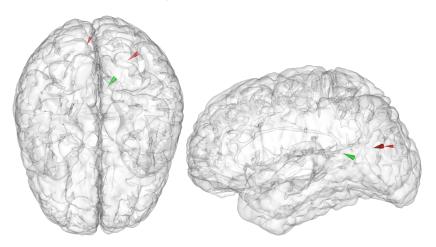
Reference (green cone) and minimum norm estimate (red cones):

$$s_{\text{MNE}} = \arg\min\left\{\|f - Ls\|_2^2 + \lambda\|s_{\text{amp}}\|_2^2\right\}$$

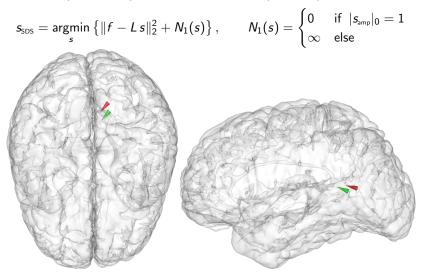


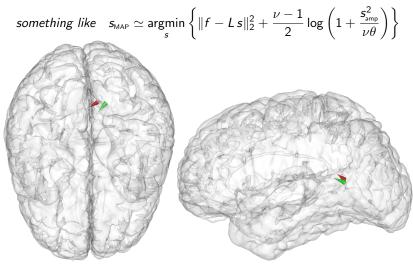
Reference (green cone) and minimum current estimate (red cones):

$$s_{\text{MCE}} = \arg\min\left\{\|f - Ls\|_2^2 + \lambda \|s_{\text{amp}}\|_1\right\}$$



Reference (green cone) and single dipole scan (red cone):





"Theorem": All variational regularization approaches

$$\hat{s} = \operatorname*{argmin}_{s} \left\{ \|f - Ls\|_2^2 + \sum_i g(|s_i|) \right\}$$

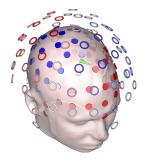
that are uniform in i (no weighting) with convex g have depth bias:

- ▶ $|\hat{s}_i|$ has its maximum at the boundary of the gray matter.
- The proof combines properties of the adjoint problem of EEG/MEG with convex analysis (appendix).

Our (earlier) empirical results for EEG confirm this:

F.L., S. Pursiainen, M. Burger, C.H. Wolters, 2012. Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents. NeuroImage, 61(4):1364–1382.

EEG vs. MEG and EMEG



- Which modality is "better"?
- Does EMEG combine the deficits or strengths?

"EEG vs. MEG" has practical and theoretical aspects, don't mix them up!

Dassios, Fokas, 2013. The definite non-uniqueness results for deterministic EEG and MEG data, Inverse Problems.

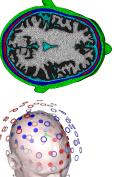
Setting:

- Realistic head model.
- Equal number of EEG/MEG sensors.
- Sources in gray matter volume.
- One, two or three active sources.
- Evaluation using dipole localization error or earth mover's distance.

Inverse methods:

- Hierachical Bayesian Modeling (HBM)
- Minimum norm estimation (MNE)
- Different weighted MNE (WMNE) variants
- sLORETA





12

UCL

Results:

► Localization performance of HBM is equal for EEG and MEG.

- ► For WMNE variants and sLORETA, it is better for MEG.
- EMD (localization + extend) is better for EEG than MEG (all methods).
- ▶ HBM and sLORETA do not show any depth bias.
- Optimizing a-priori weights for WMNE is difficult: Most weights try to optimize single dipole recovery for one modality at the expense of source separation.

Conclusions:

- "Performance" of single modalities cannot be assessed independent of an inverse method used! This is a feature of the ill-posedness.
- MNE variants and sLORETA: Better localization of MEG comes at the costs of larger blurring.

Results:

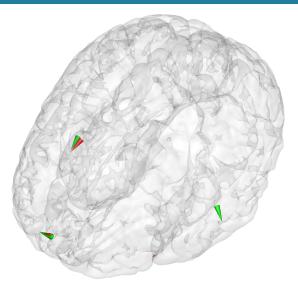
- ► EEG/MEG combination improves performance of all methods.
- Combination reduces variance and outliers in the error statistics.

- ► HBM source separation especially profits from combination.
- Depth localization does not always profit, especially if a single modality is very weak in that aspect.

Conclusions:

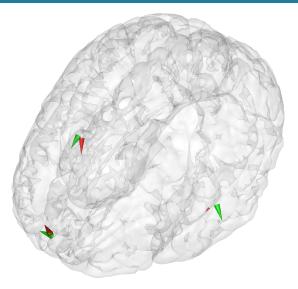
- EEG/MEG combination stabilizes and improves source reconstruction.
- No "combination of weaknesses"

HBM Simulation Studies, Specific Results I: EEG



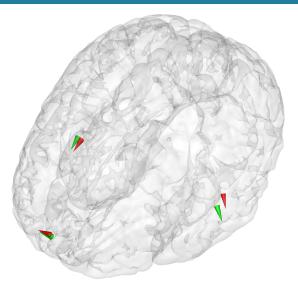
green cones: reference source

HBM Simulation Studies, Specific Results I: MEG



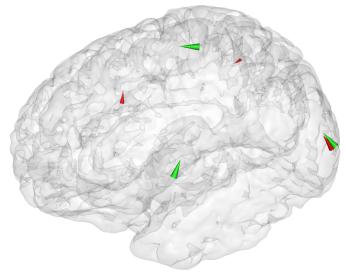
green cones: reference source

HBM Simulation Studies, Specific Results I: EMEG



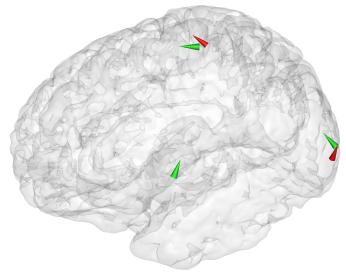
green cones: reference source

HBM Simulation Studies, Specific Results III: EEG



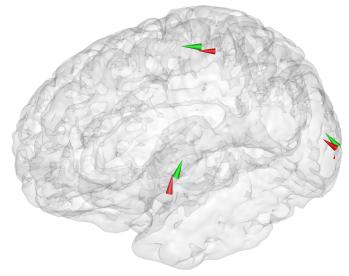
green cones: reference source

HBM Simulation Studies, Specific Results III: MEG



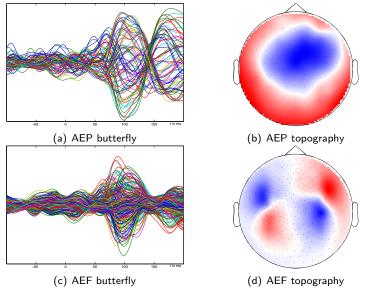
green cones: reference source

HBM Simulation Studies, Specific Results III: EMEG

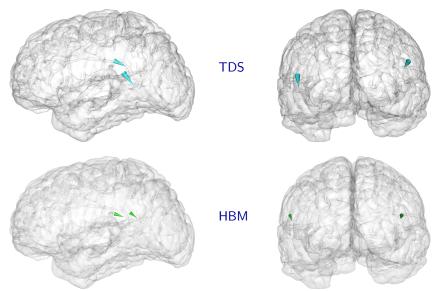


green cones: reference source

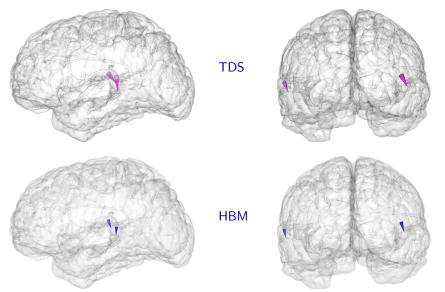
Validation with Auditory Evoked N100(m)



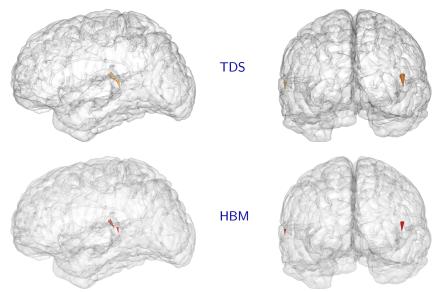
Validation of HBM for AEP/AEF: EEG alone

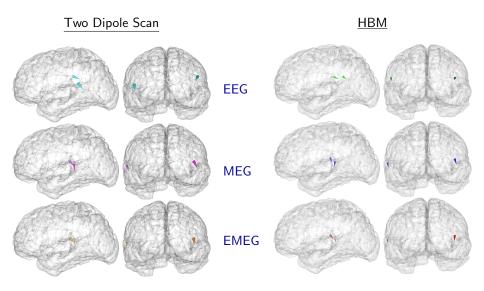


Validation of HBM for AEP/AEF: MEG alone



Validation of HBM for AEP/AEF: EMEG





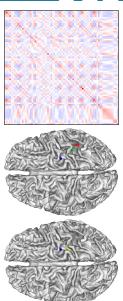
Disappointing first results (not shown here), also reported by others.

Non-linear, non-convex methods too sensitive to

- Noise modeling errors?
- Source modeling errors / background activity?
- Forward modeling errors?
- \rightsquigarrow Examination through sensitivity studies.

Results:

• HBM estimates are surprisingly robust.



UCL

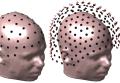
Another Perspective on Sparse EEG/MEG Combination

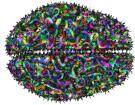
Aim: Interplay of realistic forward and ℓ_1 -norm inverse modeling. Methods:

- Compare exact recovery conditions developed in compressed sensing.
- Head model cascade, surface source spaces.

Results concerning EEG/MEG, EMEG:

- Combination boosts reconstruction performance.
- Strong conditions like coherence or RIP mislead.
- L., Tellen, Wolters, Burger, 2013. Sparse Recovery Conditions and Realistic Forward Modeling in EEG/MEG Source Reconstruction. Compressed Sensing and its Applications, Berlin.





Source reconstruction:

- We need to accept the difficulty of source reconstruction.
- Toolbox of different, prior-dominated inverse methods.
- We need a rigorous, objective assessment of their pro's, con's and limitations for specific source scenarios.

- Example: Depth bias of uniform convex regularization.
- > Pseudo-physiological motivations and folklore need to be overcome.
- Hope by multi-modal integration (EMEG, fMRI, NIRS, PET/SPECT,...), anatomical information (ROI, orientation), functional organization (atlas, DW-MRI), coupling to generative models?

Summary, Conclusions, Discussion & Outlook II

Fully Bayesian inference for hierarchical Bayesian modeling:

- Promising results for focal source networks.
- Validated on simulated and experimental data.
- Non-convexity is challenging:
 - Heuristic optimization by multiple, MCMC-informed seeds.
 - Optimization community turn on such problems...

EEG vs. MEG, EMEG combination:

- Don't mix up practical and theoretical arguments.
- Theoretically, they provide complementary information of similar quality.
- "Performance" of single modalities cannot be assessed independent of an inverse method used!
- EMEG combines the strengths, not weaknesses of single modalities and stabilizes and improves source reconstruction.

- F.L., Ü. Aydin, J. Vorwerk, M. Burger, C.H. Wolters. Hierarchical Bayesian Inference for Combined EEG/MEG Source Analysis (in preparation)
- F.L., 2014. Bayesian Inversion in Biomedical Imaging. PhD Thesis, University of Münster.
- F.L., S. Pursiainen, M. Burger, C.H. Wolters, 2012. Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents. NeuroImage, 61(4):1364–1382.

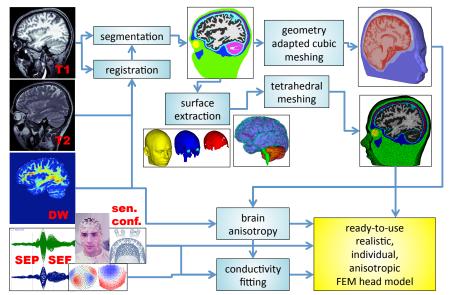
Thank you for your attention!

- F.L., Ü. Aydin, J. Vorwerk, M. Burger, C.H. Wolters. *Hierarchical Bayesian Inference for Combined EEG/MEG Source Analysis (in preparation)*
- F.L., 2014. Bayesian Inversion in Biomedical Imaging. PhD Thesis, University of Münster.
- F.L., S. Pursiainen, M. Burger, C.H. Wolters, 2012. Hierarchical Bayesian inference for the EEG inverse problem using realistic FE head models: Depth localization and source separation for focal primary currents. NeuroImage, 61(4):1364–1382.

Realistic Head Modeling

UCL

Realistic and individual head models for simulating the forward equations.



$$p_{post}(s,\gamma|f) \propto \exp\left(-\frac{1}{2}\|f - Au\|_2^2 - \sum_i^n \left(\frac{(s_{amp})_i^2 + 2\beta}{2\gamma_i} + (\alpha + 1/2)\log(\gamma_i)\right)\right)$$

All computational approaches (optimization or sampling) exploit the conditional structure:

Fix γ and update *s* by solving *n*-dim linear problem.

Fix s and update γ by solving n 1-dim non-linear problems.

Major difficulty: Multimodality of posterior.

Heuristic Full-MAP computation:

- Use MCMC to explore full posterior (avoids very sub-optimal local modes).
- Initialize alternating optimization by local MCMC averages to compute local modes.

No guarantee for finding highest mode but usually an acceptable result.

Variational regularization:

$$\hat{s} = \operatorname*{argmin}_{s} \left\{ \|f - Ls\|_{2}^{2} + \mathcal{J}(s)
ight\}$$

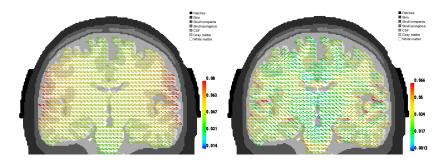
First order optimality condition:

$$-L^{T}(f-L\hat{s})+\mathcal{J}'(\hat{s})\stackrel{!}{=}0\qquad\Longleftrightarrow\qquad\mathcal{J}'(\hat{s})=L^{T}(f-L\hat{s})$$

That means: $\mathcal{J}'(\hat{s}) \in Range(L^T)$. How does $Range(L^T)$ look like?

- L^T is a discretization of the adjoint PDE to EEG / MEG.
- It maps electric potentials / magnetic fields to currents in the brain.
- Essentially solves the tCS / TMS brain stimulation problem.
- Vallaghé, Papadopoulo, Clerc, 2009. The adjoint method for general EEG and MEG sensor-based lead field equations Phy. Med. Bio.

Solutions to the tCS Problem



Wagner, 2015. Optimizing tCS and TMS multi-sensor setups using realistic head models PhD Thesis, University of Münster.
 See his poster: "Optimized stimulation protocols in transcranial direct current stimulation".

 $\mathcal{J}'(\hat{s}) \in Range(L^T) \Longrightarrow \mathcal{J}'(\hat{s})$ fulfills maximum principle (in continuous limit) and obtains its maximum at the gray matter boundary!

Depth Bias: The Curse of (Uniform) Convexity

Assume

- $\mathcal{J}(s) \propto \sum_{i} g(|s_i|)$ (uniform in *i*).
- ▶ for simplicity, *s* is scalar.
- $g(x) : \mathbb{R}^+ \to \mathbb{R}^+$ non-decreasing: $g'(x) \ge 0$.

If g is convex, s "inherits" maximum principle:

- g(x) is convex $\implies g''(x) \ge 0.$
- ► $g'(x) \ge 0$, $g''(x) \ge 0$ $\implies g'(x)$ is positive, non-decreasing.
- $\begin{array}{l} \bullet \ g'(|s_i|) \geqslant g'(|s_j|) \\ \Longrightarrow |s_i| \geqslant |s_j|. \end{array}$
- (𝔅'(ŝ))_i = g'(|ŝ_i|) has its maximum on boundary
 ⇒ |ŝ_i| has its maximum at the boundary

\implies Depth bias!

(nothing really changes in the vectorial case; for $g'(0) \neq 0$ or other non-smoothness, we need subdifferential calculus)



Depth Bias: The Blessings of Non-Convexity

Assume

- $\mathcal{J}(s) \propto \sum_i g(|s_i|)$, and that s is scalar.
- $g(x) : \mathbb{R}^+ \to \mathbb{R}^+$ non-decreasing: $g(x)' \ge 0$.

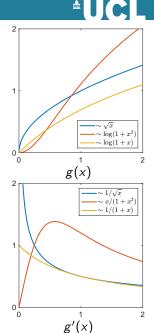
If g is non-convex, g'(x) does not necessarily induce an order and \hat{s} does not need to "inherit" maximum principle!

But caution:

We need to analyze second order optimality condition as well!

Comments:

- Multiple-dipole scans are (extremely) non-convex.
- Heuristic justifies fully-Bayesian inference which preserves and explores the non-convexity.



Non-uniform convexity $\mathcal{J}(s) \propto \sum_{i} g\left(\frac{|s_i|}{w_i(L_i)}\right)$ such as WMNE, WMCE,...

Or post-processing by weighting (noise-normalization):

$$ilde{s}_i = w_i(\hat{s}_i), \qquad \hat{s} = \operatorname*{argmin}_s \left\{ \|f - Ls\|_2^2 + \mathcal{J}(s) \right\}$$

such as sLORETA, DSPM, ...

Does that help?

- Static weights are often optimized to recover single sources.
- Empirically, sub-optimal for multiple sources (contrary to common misconception).
- Adaptive, iterative weighting often actually optimizes underlying non-convex model.

Wikipedia on MEG vs EEG: "The decay of magnetic fields as a function of distance is more pronounced than for electric fields. Therefore, MEG is more sensitive to superficial cortical activity,..."

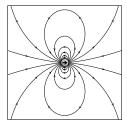
What are EM fields? (to my understanding)

- Charged particles experience an electromagnetic force.
- Everything else is mathematical description
- EM force can be described by EM field.
- Electric and magnetic fields are complementary appearances of the EM field (Maxwell).
- ► Electric and magnetic potentials often allow simpler description.

Current dipole:

- E and M fields decay like r^3 .
- E and M potentials decay like r^2 .
- Common to describe electric measurements by potentials and magnetic ones by fields.

But what do you actually measure, and how?



source: Wikimedia Commons

UCL

Work by Dassios, Fokas et al.:

- Electric and magnetic measurements carry different information about sources.
- ▶ In spherical geometry: Information is completely complementary.
- ▶ Even EMEG does not carry enough information for uniqueness...

Dassios, Fokas, 2013.

The definite non-uniqueness results for deterministic EEG and MEG data. Inverse Problems

Dassios, Fokas, Hadjiloizi, 2007. On the complementarity of electroencephalography and magnetoencephalography. Inverse Problems