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Bayesian Inference for Inverse Problems &

Noisy, ill-posed inverse problems:

f=N(A(uv),¢)

Example: f = Au+¢
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Probabilistic representation of solution allows for a rigorous quantification
of its uncertainties.



Increased Interest in Bayesian Inversion &

Inverse problems in the Bayesian framework

edited by Daniela Calvetti, Jari P Kaipio and Erkki
Somersalo.

Special issue of Inverse Problems, November 2014.

UQ and a Model Inverse Problem
Marco Iglesias and Andrew M. Stuart
SIAM News, July/August 2014.

Advantageous for high uncertainties:
» Strongly non-linear problems.
» Severely ill-posed problems.
> Little analytical structure
» Additional model uncertainties.
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Uncertainty quantification of inverse
solutions.

Dynamic Bayesian inversion for prediction
or control of dynamical systems

Infinite dimensional Bayesian inversion.

~+ M26: "Theoretical perspectives in Bayesian
inverse problems”

Incorporating model uncertainties.

New ways of encoding a-priori information.

~~ "M29: Priors and SPDEs"

Large-scale posterior sampling techniques.
~+ M23: "Sampling methods for high

dimensional Bayesian inverse problems”

Recent Trends in Bayesian Inversion (...that I'm aware of)
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and ridge regression:

oy =argmin{3f —Aul3+X|D7ull1}
u

(e.g. total variation, wavelet shrinkage, LASSO,...)
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and ridge regression:

oy =argmin{3f —Aul3+X|D7ull1}
u

(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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PhD Thesis "Bayesian Inversion in Biomedical Imaging”

» Submitted 2014, supervised by Martin =T s
Burger and Carsten H. Wolters.

» Linear inverse problems in biomedical >Bayesian Inversion in Biomedical Imaging
imaging applications.

» Simulated data scenarios and L
experimental CT and EEG/MEG data.

» Sparsity by means of

> {p-norm based priors

» Hierarchical prior modeling Felix Lucka

-2014 -

» Focus on computation and application. s

Here: Results for £,-priors and CT.
MATHEMATICS
MOUNSTER
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The ¢, Approach to Sparse Bayesian Inversion

Porior (1) X exp (4 ||DTu||5) . Prost(u]F) o exp (—%Hf —Aul - ||DTu||g)

Decrease p from 2 to 0 and stop at p = 1 for convenience.



The ¢, Approach to Sparse Bayesian Inversion &

Porior (1) X exp (4 ||DTu||5) . Prost(u]F) o exp (—%Hf —Aul - ||DTu||f;)

Decrease p from 2 to 0 and stop at p = 1 for convenience.
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Bayesian Inference with ¢; Priors

Poost (ulf) ox exp (=31 = AulZ_ = A[|DT ull)

Aims: Bayesian inversion in high dimensions (n — o0).
Priors: Simple ¢;, total variation (TV), Besov space priors.

Starting points:

@ M. Lassas, S. Siltanen, 2004. Can one use total variation
prior for edge-preserving Bayesian inversion?
Inverse Problems, 20.

@ M. Lassas, E. Saksman, S. Siltanen, 2009. Discretization
invariant Bayesian inversion and Besov space priors.
Inverse Problems and Imaging, 3(1).

@ V. Kolehmainen, M. Lassas, K. Niinimaki, S. Siltanen, 2012.
Sparsity-promoting Bayesian inversion
Inverse Problems, 28(2).




Efficient MCMC Techniques for ¢; Priors

Task: Monte Carlo integration by samples from
Poost (u[f) o< exp (~3[If = AulZ_. = X[ DT ul)

Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or A.

Contributions:
» Development of explicit single component Gibbs sampler.
» Tedious implementation for different scenarios.
» Still efficient in high dimensions (n > 10°).
>

Detailed evaluation and comparison to MH.

@ F.L., 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors.

Inverse Problems, 28(12):125012.
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New Theoretical Ideas for an Old Bayesian Debate &

Uap := argmax { ppost(u|f)} vs.  ficw ::/uppost(u|f)du

u€Rn
> CM preferred in theory, dismissed in practice.
» MAP discredited by theory, chosen in practice.




New Theoretical Ideas for an Old Bayesian Debate

fiypp 1= argmax { ppost(u|f)} vs.  ficw ::/u Ppost(u|f) du
ueRn

> CM preferred in theory, dismissed in practice.
» MAP discredited by theory, chosen in practice.

However:
> MAP results looks/performs better or similar to CM.
» Gaussian priors: MAP = CM. Funny coincidence?
» Theoretical argument has a logical flaw.




New Theoretical Ideas for an Old Bayesian Debate

Gpe :=argmax { ppost(u|f)} vs. lew ::/u Ppost (u|f) du
ueR"

> CM preferred in theory, dismissed in practice.
» MAP discredited by theory, chosen in practice.

Contributions:
» Theoretical rehabilitation of MAP.
» Key: Bayes cost functions based on Bregman distances.
» Gaussian case consistent in this framework.

@ M. Burger, F.L., 2014. Maximum a posteriori estimates in

linear inverse problems with log-concave priors are proper
Bayes estimators., Inverse Problems, 30(11):114004.

@ T. Helin, M. Burger, 2015. Maximum a posteriori probability
estimates in infinite-dimensional Bayesian inverse problems., ‘
arXiv:1412.5816v2 | ‘

~» Talk by Martin Burger in M40-I] ) \




Recent Generalization: Slice-Within-Gibbs Sampling

pprior(u) X exp (_>\||DTU||1)

Limitations:
» D must be diagonalizable (synthesis priors):
> (9-prior: exp (—A[[D7u|[9)? TV in 2D/3D?
» Additional hard-constraints?

Contributions:
> Replace explicit by generalized slice sampling.

» Implementation & evaluation for most common priors.

@ R.M. Neal, 2003. Slice Sampling. Annals of Statistics 31(3)

@ F.L., 2015. Fast Gibbs sampling for high-dimensional
Bayesian inversion. (in preparation)




Application to Experimental Data: Walnut-CT &

» Cooperation with Samuli Siltanen, Esa Niemi et al.
» Implementation of MCMC methods for Fanbeam-CT.

> Besov and TV prior; non-negativity constraints.

v

Stochastic noise modeling.

v

Bayesian perspective on limited angle CT.
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Walnut-CT with TV Prior: Full vs. Limited Angle &

(a) MAP, full (b) CM, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



Walnut-CT with TV Prior: Non-Negativity Constraints, Limited Angley

(c) CStd, uncon (d) CStd, non-neg



Summary & Conclusions

» Sparsity as a-priori information can be modeled in different ways.

» The elementary MCMC posterior samplers may show very different
performance.

» Contrary to common beliefs they are not in general slow and scale
bad with increasing dimension.

» Sample-based Bayesian inversion in high dimensions (n > 10°) is
feasible if tailored samplers are developed.

» MAP estimates are proper Bayes estimators.
> But "MAP or CM?" is NOT the key question in Bayesian inversion.

» Everything beyond point-estimates is far more interesting and can
really complement variational approaches.
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Current Related Work & Outlook &

Fast samplers can be used for simulated annealing.

v

v

Reason for the efficiency of the Gibbs samplers is unclear.

v

Adaptation, parallelization, multimodality, multi-grid.

v

Combine /,-type and hierarchical priors: £,-hypermodels.

v

Application studies had proof-of-concept character up to now.

v

Specific UQ task to explore full potential of the Bayesian approach.
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@ F.L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Miinster.

B M. Burger, F.L., 2014. Maximum a posteriori estimates in linear inverse
problems with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

@ F.L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian
inference in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

EPSRC

Engineering and Physical Sciences
Research Council
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Thank you for
your attention!

@ F.L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Miinster.

B M. Burger, F.L., 2014. Maximum a posteriori estimates in linear inverse
problems with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

@ F.L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian
inference in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

EPSRC

Engineering and Physical Sciences
Research Council
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Efficient MCMC Techniques for ¢; Priors &

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d)

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h  (h) SC Gibbs, 16h

Deconvolution, simple ¢; prior, n =513 x 513 = 263 169.
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Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

» For A\, = const., n — oo the TV prior diverges.
» CM diverges.
» MAP converges to edge-preserving limit.

uto utoe
—n= 63 || —n= 63|
—n= 255 —n = 255
n= 1023 n = 1023
n= 4095 n = 4095
n = 16383 n = 16383
—n = 65535 —n = 65535

0 13 213 10 1/3 23 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



Verification of Theoretical Predictions by MCMC &

Numerical verification of the discretization dilemma of the TV prior

(Lassas & Siltanen, 2004):
» For A\, = const., n — oo the TV prior diverges.

» CM diverges.
» MAP converges to edge-preserving limit.

whoe ut
—n = 63
—n = 255

n= 1023

n= 4095

n = 16 383
—n = 65535

213

213 13

(a) Zoom into CM estimates (b) MCMC convergence check



Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

» For A\, xv/n+1, n — oo the TV prior converges to a smoothness prior.
» CM converges to smooth limit.
» MAP converges to constant.

oo

il utes 1 ut
—n= 63 —n = 63

—n= 255 —n= 255

n= 1023 n= 1023

n = 4095 n = 4095

n = 16383 n = 16383

—n = 65535 —n = 65535

0 13 2/3 10 13 213 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

» CT using only 45 projection angles and 500 measurement pixel.

m 4: |

real solution data f colormap
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, A =500 CM, n= 642, A =500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, A = 500 CM, n= 1282, A\ = 500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, A = 500 CM, n = 2562, X\ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I.
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Examination of Alternative Priors by MCMC: TV-p

Ppost(U) o exp (—%Hf —A “”2):;1 - A ||DTu||g)

ah wuhes

1 — p=141 — p=14
— p=1.2 7 3 — p=12

— p=1.0 — p=1.0

— p=0.8 — p=0.8

0 o ] Ny
0 1}3 2)3 10 1}3 2)3 1

(c) CM (Gibbs-MCMC) (d) MAP (Simulated Annealing)
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Examination of Besov Space Priors by MCMC &

An {1-type, wavelet-based prior: Pprior (1) o< exp (= AWV T ;)

motivated by:

@ M. Lassas, E. Saksman, S. Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors., Inverse Probl Imaging, 3(1).

@ V. Kolehmainen, M. Lassas, K. Niinimaki, S. Siltanen, 2012.
Sparsity-promoting Bayesian inversion, Inverse Probl, 28(2).

@ K. Hamaldinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimaki, S.
Siltanen, 2013. Sparse Tomography, SIAM J Sci Comput, 35(3).




Walnut-CT with TV Prior: Full Angle &

(b) MAP, special color scale

(e) CM, special color scale (f) CM of ||Vul|2
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