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Bayesian Inference for Inverse Problems

Noisy, ill-posed inverse problems:

f = N (A(u), ε)

Example: f = Au + ε

plike(f |u) ∝

exp
(
− 1

2‖f − Au‖2
Σ−1

ε

)
pprior (u) ∝
exp

(
−λ ‖DTu‖2

2

)
ppost(u|f ) ∝

exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖2

2

)
Probabilistic representation of solution allows for a rigorous quantification
of its uncertainties.



Increased Interest in Bayesian Inversion

Inverse problems in the Bayesian framework
edited by Daniela Calvetti, Jari P Kaipio and Erkki
Somersalo.
Special issue of Inverse Problems, November 2014.

UQ and a Model Inverse Problem
Marco Iglesias and Andrew M. Stuart
SIAM News, July/August 2014.

Advantageous for high uncertainties:

I Strongly non-linear problems.

I Severely ill-posed problems.

I Little analytical structure

I Additional model uncertainties.
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Recent Trends in Bayesian Inversion (...that I’m aware of)

I Uncertainty quantification of inverse
solutions.

I Dynamic Bayesian inversion for prediction
or control of dynamical systems

I Infinite dimensional Bayesian inversion.

 M26: ”Theoretical perspectives in Bayesian

inverse problems”

I Incorporating model uncertainties.

I New ways of encoding a-priori information.
 ”M29: Priors and SPDEs”

I Large-scale posterior sampling techniques.
 M23: ”Sampling methods for high

dimensional Bayesian inverse problems”
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and ridge regression:

ûλ = argmin
u

{
1
2‖f − Au‖2

2 + λ‖DTu‖1

}
(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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PhD Thesis ”Bayesian Inversion in Biomedical Imaging”

I Submitted 2014, supervised by Martin
Burger and Carsten H. Wolters.

I Linear inverse problems in biomedical
imaging applications.

I Simulated data scenarios and
experimental CT and EEG/MEG data.

I Sparsity by means of
I `p-norm based priors

I Hierarchical prior modeling

I Focus on computation and application.

Here: Results for `p-priors and CT.

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER

> Bayesian Inversion in Biomedical Imaging

wissen leben
WWU Münster

Felix Lucka
- 2014 -
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The `p Approach to Sparse Bayesian Inversion
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Bayesian Inference with `1 Priors

ppost(u|f ) ∝ exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖1

)
Aims: Bayesian inversion in high dimensions (n→∞).

Priors: Simple `1, total variation (TV), Besov space priors.

Starting points:

M. Lassas, S. Siltanen, 2004. Can one use total variation
prior for edge-preserving Bayesian inversion?
Inverse Problems, 20.

M. Lassas, E. Saksman, S. Siltanen, 2009. Discretization
invariant Bayesian inversion and Besov space priors.
Inverse Problems and Imaging, 3(1).

V. Kolehmainen, M. Lassas, K. Niinimäki, S. Siltanen, 2012.
Sparsity-promoting Bayesian inversion
Inverse Problems, 28(2).
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Efficient MCMC Techniques for `1 Priors

Task: Monte Carlo integration by samples from

ppost(u|f ) ∝ exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖1

)
Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or λ.

Contributions:

I Development of explicit single component Gibbs sampler.

I Tedious implementation for different scenarios.

I Still efficient in high dimensions (n > 106).

I Detailed evaluation and comparison to MH.

F.L., 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors.
Inverse Problems, 28(12):125012.



New Theoretical Ideas for an Old Bayesian Debate

ûMAP := argmax
u∈Rn

{ ppost(u|f )} vs. ûCM :=

∫
u ppost(u|f )du

I CM preferred in theory, dismissed in practice.

I MAP discredited by theory, chosen in practice.
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ûMAP := argmax
u∈Rn

{ ppost(u|f )} vs. ûCM :=

∫
u ppost(u|f )du

I CM preferred in theory, dismissed in practice.

I MAP discredited by theory, chosen in practice.

However:

I MAP results looks/performs better or similar to CM.

I Gaussian priors: MAP = CM. Funny coincidence?

I Theoretical argument has a logical flaw.
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New Theoretical Ideas for an Old Bayesian Debate

ûMAP := argmax
u∈Rn

{ ppost(u|f )} vs. ûCM :=

∫
u ppost(u|f )du

I CM preferred in theory, dismissed in practice.

I MAP discredited by theory, chosen in practice.

Contributions:

I Theoretical rehabilitation of MAP.

I Key: Bayes cost functions based on Bregman distances.

I Gaussian case consistent in this framework.

M. Burger, F.L., 2014. Maximum a posteriori estimates in
linear inverse problems with log-concave priors are proper
Bayes estimators., Inverse Problems, 30(11):114004.

T. Helin, M. Burger, 2015. Maximum a posteriori probability
estimates in infinite-dimensional Bayesian inverse problems.,
arXiv:1412.5816v2

 Talk by Martin Burger in M40-III
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Recent Generalization: Slice-Within-Gibbs Sampling

pprior (u) ∝ exp
(
−λ‖DTu‖1

)
Limitations:

I D must be diagonalizable (synthesis priors):

I `qp-prior: exp
(
−λ‖DTu‖qp

)
? TV in 2D/3D?

I Additional hard-constraints?

Contributions:

I Replace explicit by generalized slice sampling.

I Implementation & evaluation for most common priors.

R.M. Neal, 2003. Slice Sampling. Annals of Statistics 31(3)

F.L., 2015. Fast Gibbs sampling for high-dimensional
Bayesian inversion. (in preparation)



Application to Experimental Data: Walnut-CT

I Cooperation with Samuli Siltanen, Esa Niemi et al.

I Implementation of MCMC methods for Fanbeam-CT.

I Besov and TV prior; non-negativity constraints.

I Stochastic noise modeling.

I Bayesian perspective on limited angle CT.
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Walnut-CT with TV Prior: Full vs. Limited Angle

(a) MAP, full (b) CM, full (c) CStd, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



Walnut-CT with TV Prior: Non-Negativity Constraints, Limited Angle

(a) CM, uncon (b) CM, non-neg

(c) CStd, uncon (d) CStd, non-neg



Summary & Conclusions

I Sparsity as a-priori information can be modeled in different ways.

I The elementary MCMC posterior samplers may show very different
performance.

I Contrary to common beliefs they are not in general slow and scale
bad with increasing dimension.

I Sample-based Bayesian inversion in high dimensions (n > 106) is
feasible if tailored samplers are developed.

I MAP estimates are proper Bayes estimators.

I But ”MAP or CM?” is NOT the key question in Bayesian inversion.

I Everything beyond point-estimates is far more interesting and can
really complement variational approaches.
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Current Related Work & Outlook

I Fast samplers can be used for simulated annealing.

I Reason for the efficiency of the Gibbs samplers is unclear.

I Adaptation, parallelization, multimodality, multi-grid.

I Combine `p-type and hierarchical priors: `p-hypermodels.

I Application studies had proof-of-concept character up to now.

I Specific UQ task to explore full potential of the Bayesian approach.
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Thank you for
your attention!

F.L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Münster.

M. Burger, F.L., 2014. Maximum a posteriori estimates in linear inverse
problems with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

F.L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian
inference in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.
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Efficient MCMC Techniques for `1 Priors

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d) MH-Iso, 16h

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h (h) SC Gibbs, 16h

Deconvolution, simple `1 prior, n = 513× 513 = 263 169.
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Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

I For λn = const., n −→∞ the TV prior diverges.

I CM diverges.

I MAP converges to edge-preserving limit.
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(a) CM by our Gibbs Sampler
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(b) MAP by ADMM
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(a) Zoom into CM estimates
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Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

I For λn ∝
√

n + 1, n −→∞ the TV prior converges to a smoothness prior.

I CM converges to smooth limit.

I MAP converges to constant.
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

I CT using only 45 projection angles and 500 measurement pixel.

real solution data f colormap
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, λ = 500 CM, n = 642, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, λ = 500 CM, n = 1282, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, λ = 500 CM, n = 2562, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Examination of Alternative Priors by MCMC: TV-p

ppost(u) ∝ exp
(
− 1

2‖f − Au‖2
Σ−1

ε
− λ ‖DTu‖pp

)
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(c) CM (Gibbs-MCMC)
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(d) MAP (Simulated Annealing)
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Examination of Besov Space Priors by MCMC

An `1-type, wavelet-based prior: pprior (u) ∝ exp
(
−λ‖WV Tu‖1

)
motivated by:

M. Lassas, E. Saksman, S. Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors., Inverse Probl Imaging, 3(1).

V. Kolehmainen, M. Lassas, K. Niinimäki, S. Siltanen, 2012.
Sparsity-promoting Bayesian inversion, Inverse Probl, 28(2).

K. Hämäläinen, A. Kallonen, V. Kolehmainen, M. Lassas, K. Niinimäki, S.
Siltanen, 2013. Sparse Tomography, SIAM J Sci Comput, 35(3).



Walnut-CT with TV Prior: Full Angle

(a) MAP (b) MAP, special color scale (c) CStd

(d) CM (e) CM, special color scale (f) CM of ‖∇u‖2
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