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Current PAT systems offer either exquisite image quality or 
high frame rates but not both. As the spatio-temporal 
complexity of many absorbing tissue structures is rather low, 
the data recorded is often highly redundant. Therefore, 
developing systems that only sense the non-redundant part of 
the data can increase the acquisition speed. We examine the 
acceleration of sequential Fabry-Pérot scanners (Fig 1) by 
random single-point (rSP) or patterned interrogation (sHd) 
sub-sampling (Fig 2). 
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Fig. 1: Standard Fabry-Pérot (FB) scanners raster-
sample the incident photoacoustic field sequentially with 
a high spatial resolution and sensitivity at the expense of 
a long acquisition time (cf. Zhang et al., 2008).  

Fig. 3 (left): Numerical phantom derived 
from a micro-CT scan of a mouse brain 
for simulating the perfusion of vascular 
(red) and tumorous (green) brain tissue. 

Fig. 4 (above): “Best-case”-study: Phantom (Fig 3) is close 
to the detection plane (top edge), has high contrast, all 
acoustic parameters are assumed known and the acoustic 
field is sampled at Nyquist frequency in space and time. Col 
1: Maximum intensity projection (mxIP) of phantom and 
sketches of rSP and sHd sub-sampling (acceleration factor 
128 = 0.78% of the original data). Col 2-4: mxIPs of time 
reversal (TR, cf. Treeby & Cox, 2010), L2 regularization and 
TV regularization with Bregman iterations for conventionally 
scanned, rSP and sHd data (row 1-3). 
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Results and Discussion  
We first evaluated our methods with simulated data from a 
realistic phantom (Fig 3): In general, using sparse variational 
methods is essential to obtain high quality reconstructions from 
sub-sampled data (Fig 4). The comparison between "best-
case" (Fig 4) and "realistic-case" data (Fig 6) reveals that the 
acceleration factor achievable heavily depends on the quality 
of the data. Furthermore, sHd slightly outperforms rSP sub-
sampling. Fig 7,8,9 show the results for experimental data: 
The acceleration factors achievable are similar to the “realistic-
case” simulation study: Various non-trivial difficulties such as 
developing pre-processing routines and more accurate forward 
models will have to be overcome to realize higher acceleration 
factors (> 8). Fig 9 also reveals that the TV regularization used 
here is not suitable to recover thin, vessel-like structures but 
tends to break them apart. 

Sparse Variational Image Reconstruction 
We need to solve asdasfas df , with G sub-sampling and A  
forward operator. As conventional approaches fail when used 
on sub-sampled data (cf. Fig 4), we employ sparse 
variational regularization (e.g., total variation, TV), 
 
 
 
enhanced by Bregman iterations (Osher et al, 2005),   
 
 
 
 
to compensate for the systematic bias of (1) (cf. Fig 5). 
Solving (1) by first order optimization schemes (Burger et al., 
2014), requires to evaluate    and    . Our implementation 
relies on a k-space pseudo-spectral method for 3D acoustic 
wave propagation (Treeby & Cox, 2010) which utilizes GPU 
computing to cope with the immense computational 
challenges. We derived and examined an analytical 
representation of       in Arridge et al., 2016b. 
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Fig. 7: Reconstructions of one frame of a dynamic experimental 
phantom: TR (row 1) and Bregman iterations (row 2) for full data (col 
1) rSP sub-sampling by a factor of 4 (col 2) and 8 (col 3). 

Treeby, Cox, 2010. k-Wave: MATLAB toolbox for 
the simulation and reconstruction of photoacoustic 
wave fields, Journal of Biomedical  Optics, 2(15). 

Fig. 2 (left): Patterned 
interrogation (principle): The 
FP sensor is interrogated by 
a light pattern (Huynh et al., 
2014). 

Conclusion and Outlook 
PAT wave fields can be highly compressible but a substantial 
acceleration of current sequential PAT scanners requires: 
•  Variational image reconstruction employing spatial sparsity 

constraints matching the structure of the target. Typical PAT 
targets, such as vasculature-rich images, need more 
sophisticated regularization terms than TV. 

•  An accurate forward model well-aligned with the data. This 
requires refined data pre-processing, and data-driven 
model calibration. 

The full results can be found in Arridge et al., 2016a. Further 
acceleration of dynamic PAT requires variational methods 
employing spatio-temporal sparsity constraints which also 
exploit the temporal redundancy of data generated by 
dynamics of low complexity.  
 

Fig. 9: In-vivo data of the skin vasculature of a mouse acquired by a 
standard FP scanner: Comparison between TR (row 1-2) and TVBreg 
(row 3-4) for full data (col 1), rSP sub-sampling by factor 4 (col 2) and 8 
(col 3). Rows 1+3 show depth-mxIP, rows 2+4 a vertical slice.  

Fig. 5: Difference between normal TV 
regularized solution and Bregman 
iterations. Left: Positive part of the 
difference in red colour scale. Right: 
Negative part of the difference in blue 
colour scale. 

Fig. 8: Hair knot (top left) acquired by a patterned 
interrogation scanner (Fig 2): TR (row 2-4) and 
Bregman iterations (row 5-7) for full data (col 1), and 
the sHd sub-sampled data accelerated by a factor of 
4 (col 2), 8 (col 3), 16 (col 4). Rows 2-4 and 5-7 
show maximum intensity projections in depth and 
both lateral directions. 

Fig. 6: “Realistic-case”-study: The phantom is more distant to the detection plane (top edge), has a lower 
contrast, the forward model is inaccurate and even for the “full” data, the acoustic field is spatially under-
sampled. Col 1: mxIP of phantom and Bregman iteration for “full” data (i.e., regularly sub-sampled by a 
factor of 4). Col 2-5: mxIPs of Bregman iterations for rSP (row 1) and sHd (row 2) sub-sampling with 
factors 1,4,8,16 (col 2,3,4,5).  


