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Background & Project Overview 
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Photoacoustic Tomography (PAT) is an emerging hybrid 
imaging technique in which soft-tissue contrast induced by 
optical light waves gives rise to an acoustic wave propagation 
(Fig. 1). Measurements thereof can be used to reconstruct 
information for clinical and preclinical tasks with both high 
resolution and high contrast (Fig. 2 & 3). The long acquisition 
time of high-resolution PAT based on Fabry Perot (FB) 
interferometers forbids dynamic, real time 3D imaging (4D 
PAT). We try to overcome this limitation by combining recent 
advances in spatio-temporal sub-sampling schemes, inverse 
problems and compressed sensing with the development of 
tailored data acquisition systems (Fig. 4).  
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Fig. 1: In PAT, a short (ns) pulse of laser light is sent into biological 
tissue where it spreads until it is absorbed (    , left picture) where-
upon it creates a local increase in pressure which propagates to the 
surface as a broadband, ultrasonic pulse (    , right picture). If the 
amplitude of this signal is recorded over an array of sensors (   ) at 
the tissue surface,       and subsequently,       can be reconstructed.    

Fig. 2: Fabry Perot interfero-
meters scan the acoustic signal 
with high spatial resolution and 
sensitivity (Zhang et al., 2008). 

Fig. 3: In vivo PAT image of murine 
tumor vasculature; from Laufer et 
al., 2012. 
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Fig. 4: Sketch of a “rice-camera”-like data acquisition system: 
Light from the interrogation laser is patterned by the 
micromirror array, reflected from the FB sensor, and focused 
into a single photodiode, see Huynh et al., 2014. 

Fig. 5: Numerical phantom mimicking a 
scenario like in Fig. 3 for simulating the 
perfusion of vascular (red) and tumorous 
(green) brain tissue. 

We need to solve asdasfas df , with G sub-sampling and A  
forward operator. As conventional approaches fail when used 
on sub-sampled data (cf. Fig. 7), we employ sparse 
variational regularization (e.g., total variation, TV), 
 
 
 
enhanced by Bregman iterations (see Osher et al, 2005),   
 
 
 
 
to compensate the systematic bias of (1) (cf. Fig 6). 
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Fig. 7: Reconstructions of the phantom in Fig 5 (maximum intensity projection in the top right picture, size: 1283 voxels) from full data and sub-
sampled data consisting of a random subset of 0.78% of all scanning locations (left bottom image), which corresponds to a compression factor of 
128. Second column: Standard time-reversal reconstruction technique (cf. Treeby & Cox, 2010) applied to the full (top) and sub-sampled (bottom) 
data. Third column: Corresponding pseudo inverse solution (i.e. (1) without regularization). Fourth column: TV regularization. Fifth column: Bregman 
iterations. For poster print, the contrast of the low intensities was enhanced by applying                      to the normalized intensities (              ). 

Fig. 8: Results for an experimental, 
blood-filled tube phantom (left figure, 
see Zhang et al., 2008). Bottom row 
from left to right: Picture of phantom, 
time-reversal solution, pseudo inverse 
and TV regularization. 

contact: f.lucka@ucl.ac.uk 

A⇤

A

Implementation & Preliminary Results  
To solve (1) by first order optimization such as proximal 
gradient or (preconditioned) ADMM schemes (cf. Burger et al., 
2014), we need  to evaluate    and    . Our implementation 
relies on a k-space pseudo-spectral method for 3D acoustic 
wave propagation (Treeby & Cox, 2010). We derived and 
tested an analytical and an explicit numerical representation of 
the adjoint    and utilized GPU computing to cope with the 
immense computational challenges. 
Fig. 5, 6 & 7 show the evaluation of our methods with 
simulated data and demonstrate the potential of sparsity-
based reconstructions from heavily sub-sampled data.  
Fig. 8 & 9 show their application to experimental data of a 
static and a dynamic phantom. Various non-trivial difficulties 
such as developing pre-processing routines and improved 
forward models will have to be overcome to realize similar 
compression factors as in the simulations. 
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Fig. 9: Dynamic phantom: A knot of ink-filled tubes is pulled and 
measured in a stop-motion way in 45 frames (top figure). Bottom figures: 
TV regularized reconstructions for different time frames. 

Spatio-Temporal Inversion 
PAT data is continuously acquired. While using sparsity-based 
inversion on each short, sub-sampled stream of data (frame) 
individually can already significantly enhance the dynamic 
frame rate, full spatio-temporal schemes can also take 
advantage of the temporal redundancies of the data and lead 
to a better trade-off between spatial and temporal resolution. 
 

Dependent on the underlying dynamics, different dynamic 
models will be implemented and tested in the future: 
 

Ø   Low-rank (+ sparsity) models for functional imaging with 
static anatomy. 

 

Ø  Tracer uptake/kinetic models for tracer-based imaging. 
 

Ø Perfusion models for bolus tracking 
 

Ø Optical flow constraints for joint image reconstruction and 
motion estimation.  

 

Simultaneously, numerical and experimental phantoms will be 
developed to evaluate our results.  

Fig . 6 : X c ross sec t i on 
(y=76,z=68) through different 
reconstructions.   

Treeby, Cox, 2010. k-Wave: MATLAB toolbox 
for the simulation and reconstruction of 
photoacoustic wave fields, Journal of 
Biomedical  Optics, 2(15). 
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