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Figure 3 (above): The first eigenvector of the conductivity tensor 
scaled by the corresponding fractional anisotropy (FA). 
Figure 4 (left): Procedure to build an individual, realistic, anisotropic 
finite element (FE) head model. Compartments: Skin, eyes, skull 
compacta, skull spongiosa, csf, gray and white matter of both 
cerebrum and cerebellum and brain stem. For gray and white matter, 
anisotropic conductivities are used, which have been computed from 
diffusion weighted MRI (DW-MRI) scans.  
Figure 5 (right): Sensor configuration used in the simulation studies. 
Shown with the topography of a single dipole (green cone). 
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Results 
 

Outlook Conclusions 
 

Model Setup 
 
 

In Lucka et al., 2012, we compared fully-Bayesian inference methods for hierarchical 
Bayesian modeling (HBM) for EEG source reconstruction to established current 
density reconstruction (CDR) methods like the minimum norm estimate (MNE, 
Hämäläinen and Ilmoniemi, 1994) or sLORETA (Pascual-Marqui, 2002). For multiple 
focal source scenarios, fully-Bayesian inference methods for HBM improved upon 
established CDR in many aspects. In particular, they showed good localization 
properties for single dipoles and did not suffer from systematic depth mis-localization 
(depth bias). In contrast to the established inverse methods, HBM-based methods 
were less likely to miss single sources in multiple source scenarios (masking) and 
were often able to reconstruct the correct number of sources.  

In this work, we addressed two questions that were posed in the outlook of Lucka 
et al., 2012:  
v EEG vs. MEG and EEG/MEG combination (EMEG): Do our findings also apply 

for MEG? The differences between EEG and MEG have mainly been 
examined by established inverse methods up to date (e.g., Molins et al., 2007). 
How are things for fully-Bayesian inference for HBM?  What is the profit of 
EMEG over the single modalities? Which source configurations benefit? 

v To facilitate the interpretation of our results, we formerly used a simplified head 
model with a homogenous inner brain. Especially for EEG/MEG combination, 
the use of a realistic, individual and anisotropic head model is mandatory.  

Motivation 
  

In two extensive simulation studies source configurations were 
reconstructed using (a) EEG, (b) MEG and (c) EMEG data. SNR: 20. 
 

(1) Single dipole recovery: 1000 single dipoles were randomly placed 
in the gray matter. Validation measures: Dipole localization error 
(DLE), earth mover’s distance (EMD, see Lucka et al., 2012) and 
depth of reference and estimated source.  

(2) Two dipole recovery: 500 two-dipole configurations were randomly 
chosen. Validation measures: EMD. 

In addition, exemplary three dipole scenarios were computed. 

Our focus is on three fully-Bayesian 
HBM methods: Full-MAP, Full-CM 
and Full-NM (Near-Mean) estimates 
(see Lucka et al., 2012). Their results 
will be compared to MNS with 
different weightings (WMNS, see, 
e.g., Fuchs et al., 1998) and 
sLORETA. 

Numerical Studies Inverse Methods 
For our studies, we use a realistic, anisotropic finite 
element (FE) head model. The model generation is 
sketched in Figure 3. A realistic EEG cap with 63 
electrodes is used. For a fair comparison, 63 
magnetometers positioned 3 cm away from the 
electrodes are used as MEG sensors (see Figure  
5). A regular grid is used to discretize the complete 
volume of the cerebral gray matter for a CDR (grid 
size: 6 mm).  

Realistic Head Modeling 
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Figure 1 (right) and 2 (bottom): Two 
different three-dipole source configurations 
(green cones) and HBM-NM source 
reconstructions (red cones) for simulated 
EEG, MEG and EMEG data. 

EEG vs. MEG 
 

v HBM methods and sLORETA do not show a depth bias 
in any modality. 

v Weighting of MNS to avoid depth bias in all modalities is 
difficult and comes at the cost of other draw-backs. 

v The average localization performance (mean DLE) of 
HBM methods is equal for EEG and MEG. For WMNS 
variants and sLORETA, it is better for MEG. 

v The mean EMD (localization + spatial extend) is better 
for EEG than MEG for all methods, although the 
differences are differently pronounced. 

EEG/MEG combination 
 

v The combination improves the average performance of 
all methods (measured in EMD and DLE). 

v The improvement of the EMD of HBM methods for 
multiple source scenarios is larger than for established 
methods (see Figures 1 and 2). 

v The combination reduces variance and outliers in the 
error statistics. 

v The correct depth localization does not always profit 
from EEG/MEG combination, especially if one of the 
single modalities is very weak in that aspect. 

v Statements about localization properties of single modalities cannot be made without a reference to the inverse method 
used. This is a feature of the ill-posed nature of the EEG/MEG inverse problem. 

v EEG/MEG combination stabilizes and improves source reconstruction to a considerable amount. 
v Fully-Bayesian HBM methods profit from EEG/MEG combination especially for source separation in multiple source 

scenarios. This further underlines the potential of these methods for complex sources scenarios in real applications. 

v For all MNS variants and sLORETA, MEG offers a better localization (DLE) of single dipoles while having a lower EMD. 
In total this means that in this source scenario, the better localization comes at the costs of a larger spatial blurring for 
these methods. 

v Preliminary results for combined AEP/AEF data can be found on Poster Mo-70.  
A detailed, extensive group study of AEP/AEF and SEF/SEP data sets will follow. 

v Practical aspects of EEG/MEG combination: Noise rescaling (see, e.g., Henson et al., 
2011), volume conductor calibration and sensor weighting. 

v Theoretical aspects of EEG/MEG combination: Source and recovery conditions and 
information gain. 

v Exact impact of the head model on EEG/MEG combination: Which of the differences 
between EEG and MEG are due to volume conduction? 

v Comparison of HBM methods and EEG and MEG for extended source configurations.  

EMEG 


