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Abstract

This thesis deals with the inverse problem of EEG/MEG source reconstruction: The estimation
of the activity-related ion currents by measuring the induced electromagnetic fields outside the
skull is a challenging mathematical inverse problem, as the number of free parameters within the
corresponding forward model is much larger than the number of measurements. Additionally, the
problem is ill-conditioned due to the smoothing propagation characteristics of the fields through
the human tissue. The thesis is devoted to the introduction of a special class of statistical models,
called hierarchical Bayesian models to overcome both obstacles. For this sake, it consists of four
main parts: The mathematical modeling and challenges of bioelectromagnetism, a theoretical
introduction of the model, the algorithmical aspects of the implementation and their practical
use and properties within simulation studies. Technically, a focus of interest is on a certain class
of inference algorithms that are based on alternated conditional walks through the parameter
space. The forward computation will be done with a realistic high resolution finite element (FE)
model of a human head.
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Notation and Abbreviations

Most of the notation and abbreviations will be introduced in the corresponding chapters, this
listing should serve as a reference for later look-up.

General notation:

A A random variable called “A”: A : Ω→ X
a The concrete realization a ∈ X of the random variable A.
A A linear operator called “A” with no connection to the former two objects
Ã, ã, Ã, ... The corresponding objects in the pseudo source framework: 2.4.3
A ∼ . . . A follows a . . . distribution or A is distributed like . . .

Ax ls= b The linear system is solved in a least-squares sense: A.1.1
Idn The identity matrix in n dimensions
N (µ,Σ) The multivariate normal probability distribution with mean µ ∈ Rn and symmet-

ric, positive semi-definite covariance matrix Σ ∈ Rn×n

Nn(µ,Σ) The same as the former one, with an explicit notation of the dimension.
N (x, µ,Σ)

The value of the former distributions at x.Nn(x, µ,Σ)

Frequently Used Abbreviations:

AO Alternated optimization: 3.2
AO MAP Alternated optimization for MAP approximation: 3.3
AS Alternated sampling: 3.2
AS CM Alternated sampling for CM approximation: 3.3
CDR Current density reconstruction: 1.3.1
CGLS Conjugate gradient least squares 3.5
CM Conditional mean: 2.2
cmAO MAP Conditional mean initialized AO MAP: 3.3
COME Center of mass error: 1.3.3
DLE Dipole localization error: 1.3.3
EEG Electroencephalography
EMD Earth mover’s distance: 1.3.3
FEM Finite element method
HBM Hierarchical Bayesian model/modeling: 2.4.2
IAS Iterative Alternating Sequential: 3.4
MAP Maximum a-posteriori: 2.2
McmAO MAP Multiple conditional mean initialized AO MAP: 3.3
MCMC Markov chain Monte Carlo: 3.1
MEG Magnetoencephalography
MNE Minimum norm estimate: 1.3.2
MRI Magnetic resonance imaging
sLORETA Standardized low resolution brain electromagnetic tomography: 1.3.2
SNR Signal to noise ratio
SP Spatial dispersion: 1.3.3
WMNE Weighted minimum norm estimate: 1.3.2
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ŝCM : P(Rn)→ Rn CM estimate: 2.2
γ ∈ Rh Hyperparameters: 2.4.2
phyper(s) ∈ P(Rh) Hyperprior density: 2.4.2
Ci ∈ Rn×n, i = 1, . . . , h Covariance component: 2.4.3
C ⊂ Rn×n Set of covariance components: 2.4.3
h Number of covariance components: 2.4.3
fi : R→ R: Single hyperprior energy: 2.4.3
Ca ∈ Rk×k Activity covariance components: 2.4.3
Cc ∈ Rn×n Current covariance components: 2.4.3
%i, i = 1, . . . , h The rank of Ci: 2.4.3
g The dimension of the pseudo source space: 2.4.3
Ai, i = 1, . . . , h The Cholesky factor of Ci: 2.4.3
Σb ∈ Rm×m The total measurement covariance: 2.4.3
Q and R Burn-in and sample size of the AS CM scheme: 3.3
T Number of iterations of AO-based schemes: 3.3
U Number of seed points for the McmAO MAP algorithm: 3.3
α and β ∈ R+ Shape and scale parameter of the generalized gamma distribu-

tion: 4.2



Introduction

Electroencephalography (EEG) and magnetoencephalography (MEG) recordings are used in a
wide range of applications today, ranging from clinical routine to cognitive science. One aim in
EEG and MEG is to reconstruct brain activity by means of non-invasive measurements. This
poses challenging mathematical problems: Simulating the field distribution on the head surface
for a given current source in the brain is called the EEG/MEG forward problem and will be intro-
duced in section 1.2. The reconstruction of the so-called primary or impressed currents is called
the inverse problem of EEG/MEG and will be introduced in section 1.3. In its generic formula-
tion, the inverse problem lacks a unique solution: Infinitely many source configurations - often
with extremely different properties - can explain the measured fields. All inverse methods rely
on the usage of a-priori information on the source activity to choose a particular solution from
the set of possible solutions. This a-priori information can reflect computational constraints as
well as neurological considerations. Nevertheless, since the problem is heavily under-determined,
the results of the different methods for one and the same measurement data differ considerably.
Up to date, there is no universal inverse method available: Most methods work well for certain
source-configurations while failing to recover others. Therefore, a careful examination of the
performance of the methods for different source configurations is still mandatory.
Hierarchical Bayesian modeling is a way to express this a-priori information by modeling the
source activity in an explicit but stochastic way. This construction recently emerged as a unifying
theoretical framework for EEG/MEG source imaging, comprising most previously established
methods as well as offering promising new methods. Chapter 2 outlines the ideas behind this
approach, Chapter 3 deals with the algorithms to implement it for practical applications, and
in Chapter 4 simulation studies on its performance for certain source scenarios are carried out.

ix





1 Basics of EEG/MEG Source Reconstruction

1.1 Neurophysiological Generators of the EEG/MEG Signals

The human brain is a highly complex organ monitoring and controlling a large number of func-
tions of the human body. Its elementary functional units are approximately 1011 electrically
excitable cells, called neurons. These neurons communicate with each other over ∼ 1015 synap-
tic connections by means of electrochemical transmission: The firing neuron (called pre-synaptic
neuron) creates an action potential (a rapid change in the electrical cross-membrane potential)
which propagates down the neuron’s axon to a synaptic connection to the dendrites of the re-
ceiving neuron (called post-synaptic neuron). The signal transmission at the synaptic connection
is carried out by the release and reception of chemical neurotransmitters. These neurotransmit-
ters cause an electric current within the dendrite and the body of the post-synaptic neuron.
The accumulation of those currents (called summation) can cause the post-synaptic neuron to
generate an action potential, and the signal is passed on. The intracellular or extracellular flow
of ion currents due to the electric potential and its changes produce electromagnetic fields which
propagate through the body’s tissue. In principle, they can be measured outside of the skull.
However, practically only specific currents produce measurable signals (see Okada, 1993 for a
discussion of the limitations of EEG and MEG): The ion currents associated with the action
potential are too fast, unstable and their multipole expansion is dominated by the quadrupole
term, which makes them hard to detect in a certain distance (see, e.g., Jackson, 1998). The
post-synaptic potential is often stable on the timescale of milliseconds and its multipole expan-
sion is dominated by the dipole term. If many neighboring neurons with similar orientations
are simultaneously in the post-synaptic excitation state, their impressed currents as well as the
ohmic volume current compensating for the charge displacement lead to an electromagnetic
field measurable on the outside of the skull. The main contribution to the EEG compared to
MEG signal slightly differs: The EEG signal is mainly produced by the extracellular volume
currents whereas the MEG signal is mainly produced by the intracellular currents (magnetic
field components generated by volume currents tend to cancel out). As a consequence, EEG
signals strongly dependents on the surrounding tissue’s conductivity, whereas MEG signals are
less influenced by that. The need for a large patch of similar oriented neurons to produce a
measurable field explains why the mayor contribution to the EEG/MEG signal originates from
the ∼ 1010 pyramidal cells (see Nicholson and Llinas, 1971): These neurons form layers where a
large number of cells are oriented in a similar way. They are found mainly in the cortical areas

Figure 1.1: Confocal image of pyramidal cell in mouse cortex
Source: Wikimedia Commons, file: GFPneuron.png
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2 1.2. THE FORWARD PROBLEM

of the brain, but also in the Hippocampus and the Amygdala. More details on this topic can be
found in Nunez and Srinivasan (2005).

1.2 The Forward Problem

The physical phenomena of electromagnetic fields produced by living cells, tissue or organisms
is called bioelectromagnetism (see Malmivuo and Plonsey, 1995 for a complete introduction).
The mathematical modeling of this phenomena will be sketched in the following:
The physical basis to start with are Maxwell’s equations and the material equations (see, e.g.,
Jackson, 1998). These are four coupled, non-linear and time-dependent PDEs for the field E(r)
and the magnetic field B(r) in the most general case. As a second step, some simplifying
assumptions are used that reduce the complexity of the problem (see Plonsey and Heppner,
1967; Sarvas, 1987; Hämäläinen et al., 1993 for details):

? Primary- and volume currents: A source current model that separates the whole current
density into two parts: A primary or impressed current, generated actively by the electro-
chemical processes in the exited cell (cf. 1.1), and dependent on the microscopic details in
the vicinity of the cell, and a passive current in the surrounding volume that compensates
for the net charge displacement caused by the primary current and is determined by the
macroscopic conductivity.

? Non magnetic material : The magnetic susceptibility of the body’s tissue is zero, thus
µ = µ0.

? Linearity : The body’s tissue is a passive conductor.

? Quasistatic approximation: The temporal changes of the fields are small compared to their
spatial propagation velocity. The tissue is (temporally-) passive, i.e., time-independent and
no inductance effects occur.

? Charge-free: In the body’s tissue, no macroscopic charge distributions can aggregate.

An additional assumption made by some approaches and explicitly avoided by others is the elec-
tric isotropy of all tissues. The method we will use for our forward simulation, namely the finite
element method (FEM ), can explicitly account for anisotropy. The quasistatic approximation
allows to consider the (scalar) electric potential Φ with E(r) = −∇Φ(r) instead of E(r). Fur-
thermore, the concept of impressed currents allows to compute B(r) directly by Biot-Savart’s
law, once Φ is known. We can state the direct or forward problem (in the classical formulation)
as:

Definition 1 (Direct problem) Let σ(r) ∈ C1(Ω;S2R3) be the conductivity and jimp(r) ∈
C1(Ω; R3) a primary current density in a bounded, simply connected domain Ω ⊂ R3 with a
smooth surface ∂Ω. The forward problem of calculating the electric potential Φ ∈ C2(Ω; R) ∩
C1(∂Ω; R) is given by solving:

∇ · (σ∇Φ) = ∇ · jimp in Ω (1.1)
n · (σ∇Φ) = 0 on ∂Ω (no-penetration condition)∫
∂Ω

Φ · dS = 0 (fix ground potential)

The magnetic field B can then be computed by (Biot-Savart):

B(r′) =
µ0

4π

∫
Ω

(
jimp(r)− σ(r) · ∇Φ(r)

)
× r′ − r
‖r′ − r‖3

d3r for r ∈ R3\Ω̄ (1.2)
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However, classical solutions can only be found for quite restrictive assumptions, and their value
with regard to more realistic modeling is limited. We will rather have to rely on the weak or
even distributional formulation of (1.1) dependent on the regularity of jimp(r), σ(r) and ∂Ω we
assume or can provide by the models used. In principle, three points that depend on each other
have to be considered:

1. A source model for jimp: How can we model the macroscopic current-flows, i.e., to which
mathematical space J ⊂ D′(Ω; R3) do we restrict jimp?

2. A volume conductor model : How can we model the dielectric properties of the different
tissues, i.e., how do we define σ(r)?

3. A method for solving (1.1): Which method is able to deal with our assumptions?

1. Source Model: A commonly accepted mathematical model for the impressed ion currents
in the post-synaptic densities is to replace the real current density by a mathematical current
dipole with an adequate dipole moment (see Brazier, 1949 for the introduction, and de Munck
et al., 1988 for an examination of this approach). Furthermore, many of those current dipoles
representing microscopic current flows with the same orientation are replaced by an equivalent
current dipole qdipδ(r − rdip). Location, amplitude and orientation of this dipole are chosen in
such a way that the dipole represents the dipole moment of the resulting macroscopic current
flow in the surrounding volume, and the total current jimp(r) is given by a linear combination of
such dipoles. This approach offers many analytical advantages, it allows, e.g., for the derivation
of asymptotic formulas for Φ for simplified volume conductors. Furthermore, this local model is
regarded as an adequate representation of focal brain activity. Nevertheless, since

δ(r) ∈ H−3/2−ε(Ω) ∀ε > 0 and Dαδ(r) ∈ H−3/2−|α|−ε(Ω) ∀ε > 0,

the sources are modeled very irregular, which is problematic for the weak formulation. Fur-
thermore, the numerical treatment of the singularities with the finite element method im-
poses theoretical and practical challenges (Wolters et al., 2007; Drechsler et al., 2009). For
finite element analysis it might be advantageous to have a less singular current model, e.g.,
jimp(r) ∈ H(div,Ω, ; R3). Whitney forms are a family of differential forms on a simplical mesh
that provide a hierarchy of basis functions that can be used to represent different electromagnetic
quantities (Tanzer et al., 2005), and automatically respect the physically relevant continuity con-
ditions across element boundaries. If the mesh is fine enough, the support of these basis functions
is considerably smaller than the spatial extent of source activity that is needed to produce a
measurable signal (cf. 1.1). Thus focal activity is well represented by these continuous basis
functions as well. For the application of such an approach see, e.g., Pursiainen (2008); Calvetti
et al. (2009).

2. Volume Conductor: Creating a realistic, individual head model for each patient or proband
is a complex and costly task: The geometries and different tissue compartments have to be
segmented from different magnetic resonance imaging (MRI ) or computerized tomography (CT )
scans (CT only for clinical indications). The automated registration of the different scans of one
subject and their segmentation are still topics of research. The assignment of conductivities to
the segmented compartments is a second challenge since, as studies show, some compartment’s
conductivities show inter- and intra-subject variations. Recently, the recordings of an MRI-
based technique, called diffusion weighted MRI (DW-MRI) have been used to determine those
conductivities for the white matter compartment (Tuch et al., 2001). For these reasons, simplified
head models are used in many applications. The most common ones are realistically shaped head
models with three compartments (scalp, skull, brain) and isotropic conductivities and models
consisting of concentric spheres whose radii are matched to the human head. It is still a topic
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of research in which situations their use introduces negligible errors compared to more realistic
models: The importance of using realistically shaped three isotropic compartment head models
was shown by Hämäläinen and Sarvas (1989); Roth et al. (1993); Cuffin (1996). Yet, the isotropic
three-compartment head model still ignores the three-layeredness of the skull (e.g., Sadleir and
Argibay, 2007), whose influence on EEG was shown in Dannhauer et al. (2009, 2010), skull holes
and inhomogeneities (e.g., Ollikainen et al., 1999), white matter conductivity anisotropy (e.g.,
Wolters et al., 2006; Hallez, 2008) and conductivity changes in the vicinity of the source (e.g.,
Wolters et al., 2005; Rullmann et al., 2009). A general overview on this topic is given in Wolters
and de Munck (2007).

3. Solution Method: As mentioned above, an analytical solution is only possible for simplified
geometries. Using realistic geometries, only numerical methods are applicable. The most com-
monly used are boundary element (BE ) methods or finite element (FE ) methods. BE methods
only need the surfaces of the compartments as a head model (most often extracted from MRI
recordings), but cannot account for anisotropic conductivities. See Hackbusch (1997) for an
introduction to this approach and, e.g., Hämäläinen and Sarvas (1989); Kybic et al. (2005) for
the application to EEG/MEG. FE methods need a discretization of the whole brain volume into
elementary geometries but can handle anisotropy and complex anatomical details. On the other
hand, as discussed above, an irregular modeling of the source activity may impose theoretical
and practical challenges for the FE method. For general introductions to finite element analysis,
see, e.g., Braess (2007) and Brenner and Scott (2008).

1.3 The Inverse Problem

1.3.1 Formulation and General Properties

The physical inverse problem in EEG/MEG-based source reconstruction can be stated as:

“Estimate brain activity non-invasively by measuring
the induced electromagnetic fields outside of the skull.”

Using the notations from Section 1.2 we will derive the corresponding mathematical formulation
of this problem:
Formally, since Φ is related to jimp via the linear operator ∇ · σ∇ with Neumann boundary
conditions (cf. (1.1)), it can be expressed in terms of the corresponding Neumann–Green’s
function GN (r′, r) (Calvetti et al., 2009), i.e., Φ is given by a Fredholm integral equation of first
kind :

Φ(r′) =
∫

Ω
GN (r′, r)∇ · jimp(r) dr (1.3)

In general, since ∇·σ∇ is not translation invariant due to the inhomogeneous σ, GN (r′, r) is not
a convolution kernel. Equation (1.3) defines a linear operator Le : J → L2(∂Ω) such that:

Φ = Lejimp, with Le[jimp](r′) :=
∫

Ω
GN (r′, r)∇ · jimp(r) dr

Using (1.2) we can define a linear operator Lm : J → C∞(R3\Ω̄)3 such that:

B = Lmjimp, with Lm[jimp](r′) :=
µ0

4π

∫
Ω

(
jimp(r)− σ(r) · ∇Le[jimp](r′)

)
× r′ − r
‖r′ − r‖3

d3r

Normally, not B but the magnetic flux is measured (by magnetometers) and spatial changes of
that (scalar) quantity (by axial- or planar gradiometers). The magnetic flux is the (scalar) surface
integral of B over the area spanned by the sensor coil, which becomes the normal component
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of B in the limiting case of vanishing coil area. Gradiometers measure the spatial derivatives
of the normal component of B in that case. In the following, we will assume point-like sensors
for the magnetic field as well ((1.1) assumes point-like sensors for the electrical potential, in
contrast to complete electrode models, see e.g., Somersalo et al., 1992; Pursiainen, 2008). To
formalize the measurement of the magnetic flux in the continuous setting, we assume that a
normal direction field n(r′) and a gradiometer direction field v(r′) are given in R3\Ω̄, indicating
a normal direction and the gradiometer direction for every potential sensor location. We then
define

Lmn : J → C∞(R3\Ω̄) via Lmn [jimp](r′) := 〈n(r′),Lm[jimp](r′)〉
Lmn,v : J → C∞(R3\Ω̄) via Lmn,v[jimp](r′) := ∂v(r′)〈n(r′),Lm[jimp](r′)〉

Hence we have three operator equations for the forward mapping, which we will combine by
introducing a single electromagnetic forward operator Lem which maps jimp ∈ J to the mea-
surements u ∈ L2(∂Ω)× C∞(R3\Ω̄)2:

u := (Φ,Bn,Bn,v)t = (Lejimp,Lmn jimp,Lmn,vjimp)t =:Lemjimp (1.4)

Definition 2 (Continuous inverse problem) Let σ(r) be a volume conductor model for Ω
and J ⊂ D′(Ω,R3) a source model. For given measurements u, the (continuous) inverse problem
of EEG/MEG is to find the impressed current jimp ∈ J satisfying (1.4).

Most practical methods to solve the inverse problem rely on choosing a finite dimensional sub-
space Jn ⊂ J on which the problem is formulated in a discrete setting. There are two main
categories of subspace models:

? Focal current models: The current consists of a small (either predefined or flexible) number
of elementary sources having arbitrary location and orientation within the source compart-
ment (usually dipoles are chosen as a source model, cf. Section 1.2).

? Distributed current models: The current consists of a large number of focal elementary
sources having a fixed location and orientation within the source compartment. This is
intended as a localized discretization of the underlying continuous current distribution and
is called current density reconstruction (CDR).

Using focal current models to solve the inverse problem leads to methods aiming to find the best
number, location, and magnitude of the elementary sources used. This can be done in a least-
squares sense to fulfill the data (e.g., Mosher et al., 1992), or in a probabilistic sense (Jun et al.,
2008). The resulting source model usually comprises far less parameters than measurements
available, thus the inverse problem is usually well-posed in the sense of Hadamard (Hadamard,
1923), i.e., it has a unique solution and the solution depends continuously on the data. When
the number of sources is unknown or the current distribution might have a larger spatial extent,
focal current models are not suitable. We will restrict ourselves to the discussion of CDRs in
this thesis. Assume that we have k locations ri, i = 1, . . . , k within the brain and place d focal
elementary sources with different orientations ji,l, i = 1, . . . , k, l = 1, . . . , d (i.e., dipole or dipole-
like sources, cf. Section 1.2) at each of these locations. The case d = 1 is most often chosen
when reliable information about the local normal direction of the gray matter layer is given
(cf. Section 1.1), and is therefore called normal constraint, whereas d = 3 is chosen, if no such
information is available. The normal constraint leads to a better relation between the number
of measurements and the number of parameters that have to be estimated. However, since the
measurements are extremely sensitive to the orientation of a single source, invalid information
on the normal directions can have serious negative impact on the solution. Now, n = d · k and
an element j of J can be approximated in Jn by a linear combination of the basis functions
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ji,l. The corresponding coefficients s ∈ Rn will become the main parameters of interest in the
following (also called sources):

j ≈
k∑
i=1

(
d∑
l=1

si,l ji,l

)

To simplify some notation, the d-dimensional i − th source vector si∗ contains all d coefficients
of a single location: si∗ = (si,1, . . . , si,d)t. Hence the `2 norm of si∗ is the source amplitude at
location ri. Furthermore, the double-index (i, l) will be replaced by a single index ((i− 1)d+ l),
i.e., the d basis functions of a single location are numbered consecutively and s :=(st1∗, . . . , s

t
k∗)

t.
That will ease the notation in the later parts, as the groups of these d basis functions will be
the atomic components on which the hierarchical extension of the model will be build up.
Now let r′i ∈ ∂Ω, i = 1, . . . ,me be the locations of the electrodes, r′i ∈ R3\Ω̄, i = me+1, . . . , (me+
mmag) be the locations of the magnetometers, and r′i ∈ R3\Ω̄, i = (me +mmag) + 1, . . . , (me +
mmag +mgrad) =: m be the locations of the gradiometers.

Definition 3 (Lead-field matrix) The matrix elements of Lem with respect to r′i, i = 1, . . . ,m
and jl, l = 1, . . . , n define the lead-field or gain matrix L ∈ Rm×n

As a result, the columns of the lead-field matrix represent the electric potential and/or magnetic
field strength or gradient measured at the sensors caused by the corresponding single elementary
source of the discretization (see Hämäläinen and Ilmoniemi, 1984; Sarvas, 1987; Hämäläinen
et al., 1993 for the introduction of this concept). Now, the field-measurements b :=u(r′i)i=1,...,m

caused by s can be calculated via:
b = L s (1.5)

Definition 4 (Discrete inverse problem) Let L be the lead-field matrix of a discretization of
a continuous problem as in definition 2. For given measurements b, the discrete inverse problem
of EEG/MEG is to find s ∈ Rn satisfying (1.5).

We will refer to this definition, when speaking of “the” inverse problem in the following. Note
that we will mainly restrict ourselves to the solution of the instantaneous in contrast to the
dynamical inverse problem (Kaipio and Somersalo, 2005). This means that we are only looking
at one single time slice of the whole data stream.

Remark: Classically, the term lead-field is introduced in a different way: Since Φ depends on
jimp in a linear way, the evaluation of Φ at a given sensor location r′i is a linear functional on
J . Due to Riesz representation theorem, there is a vector field Lei : Ω→ R3 such that:

Φ(ri) =
∫

Ω
Lei (r′) · jimp(r′) dr′

Lei represents the sensitivity distribution of the i-th electrode, and is called its (electrical) lead-
field. A similar reasoning defines a magnetic lead-field for each magneto- or gradiometer. The
discretization of these lead-fields in terms of the n basis functions in source space form the rows
of the lead-field matrix. However, this is a sensor-based perspective of the problem, which is not
very useful for the framework we will develop. We will rather choose a source location based
perspective, i.e., the columns of the lead-field matrix will play an important role. The column
of a single basis function will be called its gain vector, whereas for a given source location the
term 3-gain will denote the m× d matrix formed by the gain vectors of the d basis functions in
that location.
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Important properties of the inverse problem: In this formulation the problem is apparently
ill-posed (Hadamard, 1923):

? The number of dipoles n should be much larger than the number of sensors m. Hence,
(1.5) is under-determined.

? The formal solution of the (linear) forward equation (1.1) is a Fredholm integral equation
of the first kind (cf. (1.3)). The forward operator of the continuous problem is therefore a
compact linear operator. A closer analysis reveals that its singular values are decaying even
exponentially fast leading to a very strong smoothing of the electromagnetic fields during
their propagation through the tissue (Gencer and Williamson, 2002). The corresponding
inverse operator is unbounded, thus the inversion is ill-posed. The discrete inverse problem
inherits the properties of the continuous problem in form of the properties of the lead-field
matrix, which is ill-conditioned. One speaks of an exponentially-ill-posed problem and
although this fact is seldom discussed in publications, it is at least as important as the
previous point (see, e.g., Engl et al., 1996 for a discussion of the properties of inverse
problems involving Fredholm operators).

? EEG/MEG recordings suffer from very low Signal-to-Noise-Ratios (SNR), which is espe-
cially crucial in combination with the last point.

For CDR in EEG/MEG source reconstruction, two conceptual approaches to overcome these
difficulties have been established:

? Global, source space based methods: A-priori information on the global properties of the
solution is incorporated in an explicit or implicit way.

? Local, spatial scanning methods/beamforming : The estimate of the activity at a single
location or a small region of interest is optimized concerning a specific quantity while
suppressing crosstalk from all other areas. This is repeated for all source locations (the
source space is “scanned“).

We will not further pursue beamforming techniques here but refer to Sekihara et al. (2001, 2005);
Hillebrand et al. (2005); Greenblatt et al. (2005); Sekihara and Nagarajan (2008); Steinsträter
et al. (2010) for their use in EEG/MEG source reconstruction. In the following, we will outline
the main developments of source space based methods for CDR.

1.3.2 Development of Source Space Based Methods for CDR

Preliminary remark

Two main concepts dominated the treatment of the inverse problem:

? Regularization: The originally ill-posed problem is approximated by a well-posed problem
in such a way that the solution of the well-posed problem favors features consistent with
available a-priori knowledge on the solution. The degree of approximation is controlled by
means of a regularization parameter λ, such that λ→ 0 corresponds to the solution given
by a generalized inverse of L (see, e.g., Engl et al., 1996).

? Bayesian statistics: The high uncertainty and under-determinateness of the problem is
explicitly accounted for by formulating the inverse problem as a statistical estimation
problem. The aim is to make statistical inferences about the real source configuration
based on the information given by the measurements and the a-priori knowledge about the
underlying brain activity (see, e.g., Kaipio and Somersalo, 2005).
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While seeming quite different from the conceptual point of view, they often lead to equal algo-
rithms and solutions, and in these situations, it is a personal favor which description to use. The
latest publications tend to favor the Bayesian perception, which often leads to the belief that
they represent new ideas whereas regularization based methods such as MNE or LORETA are
regarded as ”old“. However, historically, this is not true: Hämäläinen et al. (1987) introduced
the Bayesian perception of the inverse problem at the same time when regularization techniques
were first introduced (Sarvas, 1987). In the following, ideas or interpretations from both frame-
works were used alternately to improve the methods for CDR. A Bayesian formulation of the
inverse problem as a starting point is quite common in the regularization community nowadays,
as well. At first glance, this might give the impression that all recent methods rely on ideas from
the field of Bayesian statistics, which is not true. In several situations, it was even the other
way round: A Bayesian formulation was found for an already existing regularization technique
(see Chapter 4 and Section A.1.8).
Since we will focus on the Bayesian approach in Chapter 2, we will use the framework of regu-
larization to introduce some standard methods in the remaining part of this chapter. Revisiting
these methods within the Bayesian framework will ease the interpretation of the key concepts
thereof.

Chronological Order

Hämäläinen and Ilmoniemi (1984) is the first publication proposing a practical method for CDR,
called minimum norm estimate (MNE ):

ŝMNE,84 = L+b
A.1.1= Lt(LLt)−1b

This approach uses the Moore–Penrose pseudoinverse A+ of a matrix A (Ben-Israel and Gre-
ville, 2003), which maps b to the least-squares solution of (1.5). Shortly after, the importance
of a regularization of the problem was discussed: Relying on Parker (1977), Sarvas proposed
the use of a truncated singular value decomposition and the use of the χ2 criterion to deter-
mine the truncation value (Sarvas, 1987). The minimum norm solution normally considered in
EEG/MEG source reconstruction (Hämäläinen and Ilmoniemi, 1994) is given by the classical
`2-norm Tikhonov regularization (Tikhonov and Arsenin, 1977):

ŝMNE = argmin
s∈Rn

{
‖b− L s‖22 + λ‖s‖22

} A.1.1= (LtL + λ Idn)−1Ltb
(A.7)
= Lt(LLt + λ Idm)−1b

Compared to the original MNE the problem has been approximated by a quadratic minimization
problem. Since this has a linear first-order condition the estimate is still given by a linear
mapping of the measurements b.
Ioannides et al. (1990) were the first who introduced a weighting of source locations into the
inversion process, intending to encode a-priori information on the probability of source activity at
certain locations. Dale and Sereno (1993) extended this approach and showed with a statistical
argument that in case of normally distributed noise with zero mean and known covariance
matrices Σε for the sensors and Σs for the sources, the optimal linear estimator for s is given
by:

ŝWMNE = ΣsLt(LΣsLt + Σε)−1b
A.1.1= argmin

s∈Rn

{
‖Σ−1/2

ε (b− L s)‖22 + ‖Σ−1/2
s s‖22

}
(1.6)

We will call this solution weighted minimum norm estimate (WMNE ), although some authors
use that term only for special cases of Σε and Σs. Another commonly used parameterization of
WMNE is given by:

ŝWMNE = argmin
s∈Rn

{
‖b− L s‖22 + λ‖Ws‖22

} A.1.1= (WtW)−1Lt(L(WtW)−1Lt + λIdm)−1b
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Both formulations can be transfered into each other by choosing Σε = σ2Idm and Σs =
1
λ(WtW)−1. The frequently used LORETA (Pascual-Marqui et al., 1994) method is a special
case of WMNEs aiming at spatially smooth estimates. Due to the well known blurring property
of `2-norm based solutions, `1-norm based approaches were proposed to recover focal current
configurations (termed minimum current estimate (MCE ) Matsuura and Okabe, 1995; Uutela
et al., 1999). The FOCUSS algorithm (Gorodnitsky et al., 1995) is an iteratively reweighted least
squares algorithm implicitly minimizing a concave cost function1 (Gorodnitsky and Rao, 1997).
In the original formulation it aims at minimizing

∑
si 6=0 log(|si|), s.t. Ls = b. This leads to a

highly unstable algorithm converging to a suboptimal local minimum almost always. Practical
implementations use modified and relaxed versions minimizing ‖b − L s‖22 + λ

p‖s‖
p
p, 0 < p ≤ 2.

See Wipf (2006); Wipf and Nagarajan (2009, 2010) for a discussion. Another class of methods
are re-weighted schemes like sLORETA (Pascual-Marqui, 2002) or dSPM (Dale et al., 2000)
which produce standardized estimates of source activation. As we use sLORETA in our studies
in Chapter 4, we will sketch it here: For a given λ, let ŝMNE(λ) be the MNE, then the sLORETA
estimate ϕsLORETA at location ri is computed by:

ϕsLORETA,i = ŝtMNE,i∗(λ)
(
R(i,i)

)−1
ŝMNE,i∗(λ) where R := Lt(LLt + λ Idm)−1L

is the resolution matrix of the MNE, and R(i,i) its d× d diagonal block belonging to the source
location i. Many spatio-temporal schemes have been proposed as well, but will not be discussed
here (e.g., Schmitt and Louis, 2002; Schmitt et al., 2002).
The class of weighted minimum norm solution schemes led to a generalization of the methods:
Σs encodes our modeling of the source activity, but can also be used to compensate for unwanted
features. For instance, three possible choices considered by various studies are:

? Σs = diag(LtL)−1 :=(Wt W)−1, with W = diag(‖L(·,1)‖, . . . , ‖L(·,n)‖). This was proposed
to compensate for a phenomena called depth bias which will be introduced in Section 4.1.
See, e.g., Ioannides et al. (1990) for this approach.

? Σs = (Wt Bt B W)−1, with B being the discrete Laplacian. This models spatial correlations
between the source locations, and features a weighting as in the previous proposal (Pascual-
Marqui et al., 1994).

? Σs = Idn + αAfMRI, where AfMRI is a diagonal matrix encoding the activity measured by a
functional magnetic resonance imaging (fMRI ) scan. This is usually done in a binarized
form, i.e., (AfMRI)(i,i) = 1 if the fMRI activation exceeds a certain threshold and 0 else
(Liu et al., 1998; Phillips et al., 2002a; Henson et al., 2010). The parameter α weights the
impact of the fMRI information (see Liu et al., 2002, 2006a,b for a discussion).

Since all three covariances encode valuable information and their use improves certain features of
the solution over the ordinary MNE, the idea to combine them came up (Phillips et al., 2002a):

Σs =
h∑
i=1

γiCi, Ci ∈ C, |C| = h,

where C is a predefined set of covariance matrices Ci like the ones discussed before, termed co-
variance components from now on, and γi are hyperparameters controlling the weighting between
them. This construction immediately poses the question of how to choose these hyperparame-
ters. Whereas early approaches tried to determine the optimal weighting by running simulation
studies (e.g., Liu et al., 1998), Phillips et al. (2002a) suggested to estimate them from the data,
too. The theoretical consolidation of this approach leads to hierarchical Bayesian models, which
is the main topic of this thesis and will be introduced in detail in the following chapter. Sato

1It is actually a modified Newton’s method
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et al. (2004) were the first to come up with such a model for EEG/MEG source reconstruction,
further important contributions are Friston et al. (2002b,a); Sato et al. (2004); Phillips et al.
(2005), Mattout et al. (2006); Nummenmaa et al. (2007b,a); Wipf et al. (2007); Friston et al.
(2008); Wipf and Nagarajan (2009); Calvetti et al. (2009).

1.3.3 Validation, Performance Measures and Inverse Crimes

The appropriate validation of inverse methods in EEG/MEG source-reconstruction is a difficult
task, since the spatio-temporal properties of real brain activity related source currents are not
sufficiently known yet. There are three most commonly used validation means:

1. Real-data: The validation with data originating from real experiments has the methodical
advantage that one does not need to impose artificial assumptions concerning the under-
lying source model. The disadvantage is of course that no quantitative evaluation of the
results can be made. Qualitative evaluation needs the expertise of a neurologist, and for
many experiments, even that might not be sufficient.

2. Synthetic-data: When using synthetic data produced by an invented source-configuration,
it is crucial to avoid an inverse crime, i.e., model and reality are identified (Kaipio and
Somersalo, 2005). For our problem, one should not produce synthetic data with the same
lead-field matrix used for the inversion, which would correspond to the assumption that
the real current sources are also restricted to the chosen source space nodes (in fact, one
should not use the lead-field matrix-concept for the data-generation at all but use mesh-
free forward computations). Strictly, it is even an inverse crime to use the concept of
current-dipoles for the data-generation, as it is a modeling assumption, too.

3. Semi-synthetic-data: A third way between the two previous ones, is to use real data and
real noise as a starting point and to then construct a source-configuration that would lead
to similar data. This synthetic data is then mixed with the real noise and used for the
inversion, and the results are compared to the constructed source-configuration. See e.g.,
Friston et al. (2008) for this procedure.

In this thesis, validation by synthetic-data will be carried out to assess the reconstruction prop-
erties of different inverse methods. In the following, the measures we will use to evaluate their
performance will be introduced. This thesis also aims at a careful examination of their practical
value for arbitrary source configurations. A general problem is that the measures used in most
publications rely on an inverse crime per se, i.e., real and estimated source are assumed to come
from the same space (Rn in our case). We would need a mapping of the real sources to the space
of estimated sources to apply these measures, but this choice has a non trivial impact on the
results in any case, and is not very convincing from the theoretical perspective as well. Further-
more, some measures are only applicable for linear inverse methods (they calculate properties of
the resolution matrix ). We will thus only rely on mesh-free measures applicable for any inverse
method and underlying real source configuration.
If the real source configuration is modeled as a single dipole, the dipole localization error (DLE )
(e.g., Molins et al., 2008) is the most commonly used measure:

Definition 5 (Dipole localization error (DLE)) Let jr = M · δrd be the real source config-
uration consisting of a dipole at position rd. Then

dDLE(s, jr) := ‖rd − rj‖, with j = argmax
i
{‖si∗‖2} .

For this thesis we will also need a relaxed, continuous version of the DLE. Our proposal for this
will be called pth center of mass error (p-COME ):
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Figure 1.2: The curves of N = f̊(s, q) for s = ŝMNE (blue), s = ϕsLORETA (green), and s = ŝCM (red,
see 4.2) for a simplified model.

Definition 6 (pth center of mass error (pth-COME))

dpCOME(s, jr) := ‖rd − rp-COM‖, where rp-COM =
1
τ

k∑
i=1

‖si∗‖p ri, with τ =
k∑
i=1

‖si∗‖p,

and rd has the same meaning as in the DLE definition.

For p = 1 this is the normal mass center of the current distribution, for p→∞ it converges to
the DLE.
Furthermore, we will need a continuous measure how focal or blurred the estimate is, i.e., a
measure for the spatial dispersion. A standard approach would be to define a threshold q, and
count the percentage of sources whose amplitude is above q times the maximal source amplitude
max‖si∗‖2. We will call this measure f̊(s, q). However, f̊(s, q) is not continuous, and involves
some arbitrariness, since q has to be chosen ad hoc. In Figure 1.2 three plots of f̊(s, q) as a
function of q are depicted for a simplified model geometry. The curves for focal and widespread
CDRs show quite obvious differences. We therefore propose to use a normalized version of the
area below the curve as a measure for the spatial dispersion:

Definition 7 (Spatial dispersion (SD))

ΓSP :=
1

(k − 1)

(∫ 1

0
f̊(s, q) dq − 1

)
=

1
(k − 1)

(
k∑
i=1

‖si∗‖2
a?,∞

− 1

)
, with a?,∞ = max

j
‖sj∗‖2

Note that this measure does not compare the spatial spread of real and estimated source, but
only yields information about the estimate.
Finally, a measure that combines the aspects of right localization and right spatial dispersion
would be desirable. In addition, the proposed localization measures are not easy to extend to
more complex patterns of source activity in an intuitive way: The number of possible misfits
between real and estimated activity becomes very large, and thus a number of heuristic measures
applicable for a fixed number of source dipoles have been proposed. However, in this thesis, we
will examine the use of measures based on optimal transport to tackle both problems: Wasser-
stein metrics are distance measures between probability distributions (Ambrosio et al., 2008):



12 1.3. THE INVERSE PROBLEM

Definition 8 (Wasserstein metric) Let µ and ν be two probability measures on a Radon space
(Ω, d) that have a finite pth moment for some p ≥ 1. Then the pth Wasserstein distance Wp(µ, ν)
is defined as:

Wp(µ, ν) =
(

inf
γ∈Γ(µ,ν)

∫
Ω×Ω

d(x, y)p dγ(x, y)
)1/p

, (1.7)

where Γ(µ, ν) denotes the class of all transport maps, i.e., measures on Ω×Ω with marginals µ
and ν.

The intuitive explanation behind this quantity dates back to Monge who published it in 1781 as
an optimal transport problem: The idea is to think of the first probability measure as an amount
of sand piled on a space Ω, and of the second as a hole with the same size. For a given distance
function d, the minimum-cost transport of the sand into the holes has to be found (where the
cost of a single assignment is understood as classical physical work in terms of distance times
amount of sand). This minimal cost is the Wasserstein distance between the two measures. Due
to that analogy, it is also often called earth mover’s distance (EMD). In the following, we will
speak of the pth-EMD when referring to the pth Wasserstein distance (and omit the prefix for
the case p = 1). The concrete implementation will be discussed in Section 3.7.
Wasserstein metrics have three big advantages for the topic we are dealing with:

1. They are sensitive to both mis-localization and mismatches in spatial extent.

2. The concept of a measure is a very flexible tool for our purpose: It allows to compare
(normalized) source estimates of arbitrary form, e.g., dipole fits or CDRs with arbitrary
scaling (some CDR produce statistical values rather than real current amplitudes) with
real sources of arbitrary form (including continuous formulations).

3. In simple scenarios, it reduces to intuitive measures (e.g., for two dipoles, the spatial
distance between them).

However, it still looks like a rather abstract concept for the practical task we are aiming at, but
the lack of a more simple measure that is commonly accepted may be rooted in the fact that
the task is not that simple after all: A good measure has to mimic the way source estimates
from inverse methods are interpreted by the user, and compare this with the real source activity.
Tools from pattern recognition may be promising for this purpose as well.



2 Statistical Inverse Problems

2.1 Basic Concepts of Bayesian Modeling

A native way to deal with high uncertainty and under-determinateness of a problem is to account
for them explicitly by formulating the problem in a statistical framework. In our setting, the
inverse problem is recasted in form of a statistical quest for information:

1. All variables are modeled as random variables.

2. This randomness is not a property of the objects to be recovered, but rather reflects our
lack of information about their concrete values.

3. Every information available concerning their concrete values, (e.g., their mean value or the
scale on which we expect them to be) is explicitly encoded in their probability distributions.

4. The solution of the inverse problem is a posterior probability distribution over the unknown
variables.

The inference about statistical systems based on both a-priori information and measurements
is subject to the Bayesian approach to statistics. Bayesian statistics are based on a subjective
concept of probability, defining probability as the individual degree of belief in a statement,
given the available evidence (Jaynes and Bretthorst, 2003)1. This concept is very suitable for
the treatment of inverse problems (Kaipio and Somersalo, 2005). Bayesian statistics can be
viewed as regularizing ill-posed statistical problems by incorporating a-priori information, but
on the level of probability distributions rather than on the level of point estimates.
In the following, we will formulate the inverse problem of EEG/MEG source-reconstruction in
a statistical framework.

Notation and Remark: Subsequently, all random variables are denoted by italicized, upper
case letters (e.g., X), their corresponding concrete realizations by italicized, lower case letters
(e.g., X = x). Their probability distributions are denoted by P (X) and their probability density
functions by p(x). In contrast to random variables, linear operators are denoted by unitalicized,
upper case letters (e.g., L). It should further be noted, that the setting we will deal with for
the formulation of the inverse problem does not involve any critical issues from the point of
probability theory: All random variables defined in this thesis are finite dimensional random
variables on Rn and have a probability distribution that is absolutely continuous with respect to
the Lebesgue measure on Rn or are a Dirac measure. All these measures are Radon measures and
problems potentially arising with conditional probability densities are not relevant in this context,
since a regular version of the conditional probability densities exists ( Ambrosio et al., 2008;
Klenke, 2008). We will speak of distributions and densities instead of probability distributions
and probability densities in the following. The multivariate normal distribution will simply be
termed “Gaussian distribution“, and random variables distributed according to this distribution
will be termed “Gaussian random variables“. Note that the following sections intend to give a
gentle introduction of the main concepts rather than a solid mathematical formulation in the
sense of probability theory. For this sake, the terms probability, probability distributions and

1In contrast, the more common approach to statistics is called frequentist statistics, and is based on an objective
concept of probability, defining probability as the limit of relative frequency in a large number of similar trials.
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probability density are used somewhat loosely, as often encountered in applied statistics when it
is clear that only absolutely continuous random variables are considered.

2.2 Bayesian Formulation of the Inverse Problem of EEG/MEG

Starting of with (1.5) we account for the measurement-noise generation explicitly by adding a
random variable E :

B = L s+ E (2.1)

Note that thereby, B has become a random variable, too. It is a good approximation to assume
that E follows a Gaussian distribution with zero mean and a covariance matrix Σε (cf. 1.3.2),
which can be estimated in a data-preprocessing step. We further assume that a decorrelation
of the measurement-channels is performed, which diagonalizes the covariance matrix such that
Σε = σ2Idm. For a given s, (2.1) then states that the conditional density p(b|s) of B is given by:

plike(b|s) =
(

1
2πσ2

)m
2

exp
(
− 1

2σ2
‖b− L s‖22

)
(2.2)

The density plike(b|s) is called likelihood function or short likelihood of the measurements b, as
it encodes the probability that s generates b. This first step is a simple reformulation of the
inverse problem that does not change any of its properties and does not provide any improve-
ment. A classical statistical inference approach to estimate s, given b is the maximum likelihood
estimation, which tries to find the value of s that maximizes (2.2). Apparently, this would lead
to (1.5) again.
The next step is the central one in the Bayesian approach: s is considered to be a random vari-
able itself (in our notation: s → S). Its density pprior(s) reflects our a-priori assumptions and
knowledge on its typical values. Hence, pprior(s) is called a-priori density (and the corresponding
probability distribution is called a-priori distribution) or short prior. The choice of the likeli-
hood and the prior fully determine and specify the model that is used for inversion. However,
as the likelihood is normally determined by the process of data acquisition, the proper choice
of pprior(s) is the most important part. It determines the different approaches and methods
of model-inversion that are applicable. Therefore, most of the following sections are dedicated
to the discussion how to choose and construct priors. Note nevertheless that it is the task of
the prior to render the estimation problem well-posed. Thus it has to confine the source space
sufficiently, which means that it has to distribute the probability tightly over the source space
(one speaks of informative priors, as it should have a low entropy)
Given the likelihood and the prior, via the definition of conditional densities (Klenke, 2008), a
quality called model-evidence can be computed:

p(b) =
∫
p(b, s)ds =

∫
plike(b|s)pprior(s)ds

The model evidence encodes the probability that the formulated model could generate the ob-
served measurement b. It can be used to perform model averaging or model selection, i.e.,
different possible models are considered, and the one producing the largest model evidence is
chosen. This offers a new level of inference, used in a wide range of applications, especially for
the processing of real data rather than simulated data, where the underlying generating model
is known. For EEG/MEG see Sato et al. (2004); Henson et al. (2009a) for the choice of the
source space and the forward model on the basis of model-evidence, and, e.g., Henson et al.
(2009b, 2010) for the validation of the benefits of multimodal integration by a comparison of the
model-evidence.
Once a likelihood and a prior have been specified, Bayes rule can be applied to invert the model:

ppost(s|b) =
plike(b|s)pprior(s)

p(b)
(2.3)
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This is the conditional density of S given B. It is called posterior density/distribution or short
posterior as it represents all our information on the unknown parameter S given the realization
of B = b by merging our knowledge before the measurement (the prior) with the information
gained after performing the measurement (the likelihood). In Bayesian inference this density is
the complete solution to the inverse problem.
The result being a probability density rather than a point estimate allows for various ways of
inference. Furthermore, it offers the opportunity to quantify their reliability, e.g., the resolution
power of the data is reflected by the width of the posterior. In cases where the posterior shows
to be multimodal or suffers from extreme skewness, point estimates can become rather useless
or uninformative. Nevertheless, the common way to exploit the information contained in the
posterior is to infer a point estimate for the value of S out of it. There are two popular choices:

1. Maximum a-posteriori -estimate (MAP): ŝMAP := argmaxs∈Rn ppost(s|b). Practically, this
is a high-dimensional optimization problem.

2. Conditional mean-estimate (CM): ŝCM = E [s|b] =
∫

Rn s ppost(s|b)ds. Practically, this is a
high-dimensional integration problem.

At first glance, these two estimates do not seem to differ that much and for many distributions,
the value they aim to estimate even coincides. Still, in Section A.1.3 in the appendix, we
briefly introduce the theoretical framework of statistical estimation theory which reveals that
the estimates rely on quite contradictory approaches. A first hint to that is the different nature of
the practical tasks to obtain them. There are more sophisticated estimation methods that need
the introduction of multiple classes of parameters, and then mix the above estimation methods.
These methods will be discussed after the general introduction of this kind of modeling. For
certain constructions of the prior, a direct link to the methods outlined in Section 1.3.2 can be
established. As this will clarify the role of the distributions introduced here, we will sketch it in
the next section.

2.3 Reformulation of Tikhonov-type Regularization Methods

We start with the most commonly used a-priori assumption, i.e., we choose a Gaussian distri-
bution with zero mean and known covariance matrix Σs as a prior on S. Using Bayes rule (2.3)
and the definition of the likelihood (2.2), the posterior becomes:

ppost(s|b) = p(b)−1(2π)−m/2|Σε|−1/2 exp
(
− 1

2σ2
‖b− L s‖22

)
· (2π)−n/2|Σs|−1/2 exp

(
−1

2
stΣ−1

s s

)
∝ exp

(
−1

2

(
‖Σ−1/2

ε (b− L s)‖22 + ‖Σ−1/2
s s‖22

))
(2.4)

Computing the MAP estimate of this posterior directly gives the WMNE from Section 1.3.2 as
formulated by Dale and Sereno (1993), or in the alternative formulation:

ŝMAP = argmax
s∈Rn

{
exp

(
−1

2

(
‖Σ−1/2

ε (b− L s)‖22 + ‖Σ−1/2
s s‖22

))}
= argmin

s∈Rn

{
‖Σ−1/2

ε (b− L s)‖22 + ‖Σ−1/2
s s‖22

}
1.3.2= argmin

s∈Rn

{
‖b− L s‖22 + λ‖Ws‖22

}
, where W = σ√

λ
Σ−1/2
s

= ŝWMNE

In essence, the exchange of perspectives from the indirect modeling via classical Tikhonov reg-
ularization to the explicit one-level Gaussian modeling in the Bayesian framework works over
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a direct reciprocal relationship of Wt W and Σs or respectively of W and Σ1/2
s . This is a well

known equivalence for Gaussian priors. Some further explanations on it are given in Section
A.1.5 in the appendix. More generally, Tikhonov-type regularization with an arbitrary penalty
functional P(s) corresponds to MAP-estimation with a prior pprior(s) ∝ exp{−1

2 λ P(s)}, i.e.,
the penalty functional defines the energy2 of the prior, which is its negative natural logarithm:

ŝMAP = argmax
s∈Rn

{
exp

(
− 1

2 σ2
‖b− L s‖22

)
exp

(
−1

2
λ P(s)

)}
= argmin

s∈Rn

{
1
σ2
‖b− L s‖22 + λP(s)

}
Since many penalty functionals can be seen as abstractions of energies arising in real physical
systems, this equivalence is far more than a pure technical transformation.
While the above equivalences are quite well known, it is less known that ”adaptive“ regularization
methods as well as practical optimization algorithms for certain penalty functionals (including
the often used EM-algorithm) often correspond to algorithms to compute MAP or empirical
Bayesian (γ-MAP) estimates in hierarchical Bayesian models, which we will introduce in the
next section. Details on these correspondences will be revisited after introducing a special
hierarchical model in Section 4.2.

2.4 Hierarchical Models

2.4.1 Motivation

Brain activity as the general subject to be modeled is a very complex process that comprises
many different spatial patterns. As mentioned in Section 2.2, a prior modeling all of these
phenomena would have to distribute probability of the same order of magnitude on a wide range
of points in the source space. This would lead to a flat or uninformative prior that is not
able to render the estimation problem well-posed anymore. This problem can be handled by
introducing an adaptive, data-driven element into the estimation process. The mathematical
consolidation of this approach leads to a hierarchical multi-level model structure, which we will
introduce and discuss in the remaining part of this chapter.

2.4.2 General Construction and Point Estimates

The idea of hierarchical Bayesian models (HBM ) is to let the same data determine the ap-
propriate model used for the inversion of this data. At first glance, this looks like an obvious
overestimation of the information given by the data: We use an estimator constructed by our
data to invert our data, therefore our estimator has to be biased in some way. This methodical
conflict can be solved by extending our model by a new dimension of inference: Not only S, but
also the prior on S itself is not fixed anymore but random, determined by the values of additional
parameters γ, called hyperparameters. These parameters follow an a-priori assumed distribution
(the so called hyperprior) and are subject to estimation schemes, too. This construction follows
a top-down scheme, as the parameters of each level completely control the distribution of the
parameters of the level below, thus this modeling approach is called hierarchical modeling:

p(s,γ) = pprior(s|γ) phyper(γ) ⇒ pprior(s) =
∫
pprior(s|γ) phyper(γ)dγ (2.5)

The likelihood does not depend on γ:

plike(b|s,γ) = plike(b|s)
2In statistical physics, the probability of a state i is given by the Boltzmann distribution (Gibbs measure), i.e.,
pi ∼ exp(−β Ei), where Ei is the energy of the state, and β is the inverse of the fundamental temperature kbT .
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The posterior takes the form:

ppost(s,γ|b) ∝ plike(b|s) pprior(s|γ) phyper(γ) (2.6)

Using a large number of hyperparameters, this construction allows for the construction of both
very complex and flexible models and the incorporation of qualitative rather than quantitative
information on the level of the hyperparameters. The estimation process leads to a conve-
nient mixing of these different types of information, and data-driven hyperparameter estimation
can automatically determine relevant model-components. On the theoretical side, hierarchical
models are central to modern Bayesian statistics, for allowing a more ”objective“ approach to
inference by estimating the parameters of the prior distributions from data rather than requir-
ing them to be specified using subjective information. See MacKay (2003) and Gelman et al.
(2003) for a general reference. In the next section, a specific realization of such a model and
the mentioned properties will be discussed in detail. In the following, we will introduce the
main inference methods this construction scheme offers at this abstract stage: Note that the
posterior (2.6) now depends on two kinds of parameters, the ones of main interest s, and the
hyperparameters γ. Five main ways to deal with this situation are established:

Full-CM: Integrate ppost(s,γ|b) w.r.t. s and γ.
Full-MAP: Maximize ppost(s,γ|b) w.r.t. s and γ.
S-MAP: Integrate ppost(s,γ|b) w.r.t. γ, and maximize over s. (Type I approach)
γ-MAP: Integrate ppost(s,γ|b) w.r.t. s, and maximize over γ, first.

Then use ppost(s, γ̂(b)|b) to infer s (Type II approach, Hyperparameter MAP,
Empirical Bayes).

VB: Assume approximative factorization of ppost(s, γ|b) ≈ p̂post(s|b) p̂post(γ|b).
Approximate both with distributions that are analytically tractable
(VB = Variational Bayes).

In the traditional Bayesian framework, all kinds of parameters should be treated equally, that
is why the first two schemes are also referred to as fully-Bayesian methods. Still, practically,
the hyperparameters have been introduced with the explicit intention that they have a different
meaning than the normal parameters, hence a different treatment can be justified from the
methodical point of view. The corresponding schemes, S-MAP and γ-MAP, are usually classified
as semi-Bayesian methods. Variational Bayesian techniques (often referred to as approximate-
Bayesian methods) actually rely on more advanced considerations than a simple approximation,
but this cannot be pursued in detail here (Friston et al., 2007; Nummenmaa et al., 2007a; Wipf
and Nagarajan, 2009). We will focus on fully-Bayesian methods in this thesis.

2.4.3 Gaussian Scale Mixture Models

Construction: The special construction of the prior on s that is proposed, is called a Gaus-
sian scale mixture or conditionally Gaussian hypermodel, which means that the density of s is
controlled by hyperparameters γ, and for every fixed value of γ, it is a Gaussian density as in
Section 2.3. Consequently, varying the hyperparameters can, e.g., vary the typical scale of the
distribution (the standard deviation in the one-dimensional case). See, e.g., Dempster et al.
(1977); Palmer et al. (2006) for a general introduction and treatment of such models. Note
that this approach is different from a mixture of Gaussians which refers to the weighted sum
of Gaussian densities (often intended as an approximation to the real density): The resulting
density must not be a Gaussian density itself (it hardly ever is).
We compose the total covariance matrix as a weighted sum of covariance components Ci belong-
ing to a predefined set C ⊂ Rn×n of symmetric, positive, semi-definite matrices. The weighting
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between them is controlled by a (positive) hyperparameter γ ∈ Rh:

S|γ ∼ N (0,Σs(γ)) with Σs(γ) =
h∑
i=1

γiCi where Ci ∈ C

⇒ pprior(s|γ) = (2π)−n/2|Σs|−1/2 exp
(
−1

2
‖s‖2

Σ−1
s

)
,

where |Γ| denotes the determinant of a matrix. For the distribution of the hyperparameter γ, a
hyperprior that factorizes and takes a special form is assumed:

phyper(γ) ∝
h∏
i=1

exp
(
−1

2
fi(γi)

)
and γi > 0 (2.7)

The fi are assumed to be fixed and known at this point and will be specified later. The posterior
then takes the form:

ppost(s,γ|b)
(2.6)
∝ exp

(
−1

2

(
1
σ2
‖b− L s‖22 + ‖s‖2

Σ−1
s

+ ln |Σs|+
h∑
i=1

fi(γi)

))
(2.8)

Note that the computation of the implicit prior on s involves the integration over all hyperpa-
rameters which (in the case of normalized Ci) represent the value of the variances and therefore
the length scale on which s takes its values. This explains the term “scale mixture”. We could
easily extend the presented framework by adding more levels, but we will focus on the impact
of this one new level of the hyperprior3. Note that this is the main extension compared to
the WMNE scheme (cf. 1.3.2), which is (virtually) included in this framework, if we choose
just one variance component, namely C :=

(
Wt W

)−1 and equip γ with a singular hyperprior
phyper(γ) = δ(γ − σ2

λ ).
The analytical advantage of such a model over other possible approaches is that the expression
within the brackets in (2.8) is quadratic with respect to s and the γi’s are mutually independent.
This allows for a reformulation of the model in terms of pseudo sources which simplifies and
accelerates many practical computations with this model (see the last but one paragraph of this
section on page 21 and Chapter 3).

Choice of covariance components and hyperpriors: The choice of a specific set of covariance
components and the corresponding hyperpriors fully specifies the prior used, thus it is the im-
portant choice in this framework. As the covariance matrix expresses the likelihood of single
and simultaneous activity of sources, the choice can be motivated by neurological as well as
mathematical considerations. When encoding a-priori information into a covariance component,
one has to bear in mind that we usually formulate our a-priori knowledge in terms of the scalar
valued, positive source activity, and that source activity is the main information users are in-
terested in. However, our framework is formulated in terms of the vector valued currents. The
transfer of a-priori information about source activity correlation into the vector valued frame-
work needs some care, as we usually do not intend to enter any correlation about the orientation
of the sources as well: Just assigning a positive correlation to all d basis functions of both source
locations chains the source activity, but also chains the orientations of the basis functions. For
similar reasons, our model is not able to model inhibition, i.e., activity in one location attenu-
ates activity in another location: Assigning a negative correlation to two (oriented) basic sources
just means that they show the same amplitude of activity, but in opposed directions. An exten-
sion of our model to deal with this issue is proposed in the outlook in Section 6. To ease the

3An extension by one additional level was examined in Nummenmaa et al. (2007a), and did not show convincing
results. The authors concluded that the measurements do not contain enough information about this stage.
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notation in the following, we will distinguish between activity covariance components (ACC )
Ca ∈ Rk×k encoding the covariance structure of the source activity at different locations and
current covariance components (CCC ) Cc ∈ Rdk×dk encoding the covariance structure between
all basis functions. For the reasons presented above, we will restrict ourselves to CCCs of the
form Cc = Ca ⊗ Idd. The following components have been used or proposed so far:

? In the most simple case, Ca = Idk is used.

? Spatial smoothness can be enforced by adding ACCs that impose a covariance structure
based on an appropriate distance, e.g., in the form (Ca)i,j = exp(−dist(ri, rj)). Compo-
nents of that kind are used, e.g., in Phillips et al. (2005) and Mattout et al. (2006).

? ACCs called location priors are diagonal matrices, only consisting of ones and zeros, hence
they promote source-activity only in some locations. The extreme case is given by ACCs
of the form (Ca

q)(i,j) :=(eqe
t
q)(i,j) = δri,rq · δrj ,rq , which promote source-activity only in

one location. If they are used in combination with hyperpriors enforcing the sparsity of γ,
their choice leads to sparse source-configurations (see 4.2). Apart from location priors that
can be incorporated without any given information on the location of the source-activity,
location priors encoding some a-priori information are often used. This information can
be derived from other imaging modalities giving anatomical or functional information like
MRI, functional magnetic resonance tomography (fMRI ) or positron emission tomography
(PET ), invasive devices like electrocorticography (ECoG) or it can be chosen manually
by the clinician. Even so, the blindfolded use of location priors is dangerous, if the in-
formation is invalid (Wipf and Nagarajan, 2009). One should either combine them with
covariance components compensating for that, or include this information on another level,
as explained in the next paragraph on page 20.

? Cc := diag(LtL)−1 is often used to compensate for depth-bias (cf. 4.1). The choice of this
CCC (which corresponds to certain WMNE schemes (e.g., Fuchs et al., 1999) is crucial
from the Bayesian point of view: It encodes the a-priori information that deep-lying sources
show larger activity than superficial ones (on average). This cannot be justified from any
neurophysiological findings.

? Ca
i :=ψiψ

t
i with ψi ∈ Rk is a general construction often used in signal processing, leading

to harmonic analysis. ψi, i = 1, . . . , l are a set of basic (spatial) waves, e.g.:

∗ Resolution kernels: ψk,v is centered on the source locations k with scale v, therefore
l = n · v, e.g., ψk,v is a Gaussian centered on µ = k with variance σ = σ0 · 10v.
This leads to a multi-resolution decomposition learned from the data, often using
sparsity-enforcing hyperpriors and methods (Wipf and Nagarajan, 2009).
∗ Multiple sparse priors (Friston et al., 2008) is a technique to derive these basic waves

out of a spatial coherence matrix.
∗ Learned empirically from the data, see, e.g., Phillips et al. (2002a); Mattout et al.

(2005).

In practice, instead of using the full CCC or ACC, often only the diagonal part of it is used
(referred to as variance component). This is not only due to computational considerations,
but also showed better results in some studies (e.g., Henson et al., 2010). In addition, the
problems concerning the unwanted chaining of orientations can also be avoided by just using
variance components: These components just enlarge the single variances of both locations
relative to other locations. The final amplitude and especially the orientation will be determined
by the measurements. This does not ensure simultaneous activity but remind that once the
hyperparameters are fixed, the model collapses to a WMNE. WMNEs usually incorporate every
basis function with a significant variance that can account for an aspect of the measurements.
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Consequently, both locations will usually show significant activity if they contribute to the data
in some way and their variances are larger than those of other locations.
Note that concerning the covariance components, the framework is constructed in a modular way,
as one can easily include or exclude certain covariance components, and test how combinations
of them work. Facing this variety of possible covariance components, the central question is,
how to choose a set C? The answer to this question relies heavily on the hyperpriors chosen, and
the inversion method used. With each covariance component, a hyperparameter γi is associated
that controls the relevance of the component. Usually, a kind of competition between the
hyperparameters, leading to the pruning of most of them, and as a result to a sparse γ, is
desired. This may also be needed, as discussed in the last paragraph of this section on page 23.
The next important choice are the hyperpriors. Hyperpriors have a different function for the
whole inversion process than priors. As pointed out in Section 2.2, the prior has to regularize
the estimation problem, thus it has to reduce the dynamical range of the parameters sufficiently.
The hyperprior just controls the parameters defining the prior, hence it has to confirm that if it
gives moderate probability to a set of these parameters, the resulting prior can fulfill its function.
One important property is that it has to prohibit overfitting, i.e., the solution for s is found in a
γ-region that corresponds to models that are complex with regard to s. This will be explained
in a more general setting in the last paragraph of this section on page 23.
For some densities, these demands allow the hyperprior to be nearly arbitrary. This concept is
often used for Gaussian priors, e.g., hyperpriors are used that are non-informative (i.e., scale-
invariant for a scale parameter like γ, see MacKay, 2003), flat and not even normalizable. This
just means that the hyperprior allows that the values of the hyperparameters are estimated
solely data-driven (the hyperprior encodes our a-priori information on the typical values of γ,
if we don’t have any information at hand, we completely rely on our data). However, the
use of these improper (not normalizable) hyperpriors needs some care: It is not always clear,
whether the resulting posterior is proper: For the non-informative hyperprior, i.e., phyper(γi) ∼
γ−1
i the resulting posterior is in fact improper (Gelman, 2006; Nummenmaa et al., 2007a),

whereas a flat hyperprior, i.e., phyper(γi) ∼ 1 results in a proper posterior. To prevent this, the
concept of weakly-informative hyperpriors is used, i.e., a distribution is chosen that is proper, but
intentionally provides weaker information than any a-priori knowledge that is available (Gelman,
2006).
Further common choices include the gamma and inverse-gamma distribution (e.g., Sato et al.,
2004; Nummenmaa et al., 2007a; Calvetti et al., 2009, see 4.2) and the log-normal distribution
(Friston et al., 2008). These distributions lead to a sparse γ. The pruning process leading
to this result is usually regarded as an automated, data-driven learning of the relevant model
features, termed automatic relevance determination (ARD, see MacKay, 1991; Neal, 1994). More
information on the whole topic can be found in Gelman (2006).

A-priori information embedding: As indicated in the last paragraph, a-priori information can
be incorporated at different levels of the hierarchical structure of the model. In general, qual-
itative information is more suitable for higher levels, whereas quantitative information can be
incorporated in the lower stages. The higher levels of the model determine the general behavior,
whereas the lower levels need to regularize the statistical problem, thus they need to constrain
the effective range of the main parameters sufficiently once the higher levels are set up. A crucial
point in this context is the validity of the a-priori information. If invalid a-priori information is
included in the lowest levels of the model, it can hardly be corrected by the data, and usually
leads to invalid results (see, e.g., Liu et al., 2006b for the impact of invalid fMRI location priors).
One should therefore consider how “hard” or “soft” the a-priori information given is, and include
it at the right stage. For our concrete model, this can be done in the following ways:

? Structural information with high reliability, e.g., given by CT or MRI-scans are usually
used to confine the source space beforehand, and are further used in the forward compu-
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tation. They are included into the model implicitly over the lead-field matrix (Dale and
Sereno, 1993).

? Structural information with lower reliability can be included over covariance components as
sketched above, but should only be used in combination with other covariance components
that can correct their influence if necessary (Wipf and Nagarajan, 2009).

? Structural information from standard probability maps given by computational brain at-
lases, has to be registered to the individual source space first, its validity is crucial, espe-
cially in cases, where the anatomy of the patients head shows anomalies (Trujillo-Barreto
et al., 2004).

? Information learned empirically from the same or comparable data can be included over
covariance components (Phillips et al., 2002a; Mattout et al., 2005).

? Functional information with low spatio or temporal resolution, e.g., given by fMRI or PET-
scans can either be included as covariance components, but as above, only in combination
with other components, but it was suggested that this information should rather be in-
cluded in the hyperprior (Sato et al., 2004). This holds for functional information given by
probability maps in general (fMRI information is usually given in this format), especially
concerning information given by computational brain atlases (Wipf and Nagarajan, 2009).

Generalized transformation to standard form: In the following, we will formulate the scale
mixture model in terms of generalized or pseudo sources. This will ease the formulation and
implementation of many algorithms and clarifies the rule of the covariance components Ci.
In principle, an artificial generative source model is created that has a larger dimension, but a
simpler structure and is equivalent to our original model in terms of the processing of external and
a-priori information (i.e., completely equivalent in the sense of Bayesian statistics, but somewhat
less natural in the description). This concept generalizes the transformation to standard form for
weighted Tikhonov regularization (e.g., Engl et al., 1996) which is used to improve the condition
of the underlying problem by a change of variables, and corresponds to a whitening transform of
the variables of interest in the Bayesian framework (cf. A.1.5 for the details). For Gaussian scale
mixture models, it can be extended and has a figurative meaning: We will shift the perspective
from the amplitudes of the single basis functions Si, i = 1, . . . , n to clusters (termed pseudo
sources) of (potentially coupled) basis functions determined by Ci and sharing the same variance
γi, i = 1, . . . , h. Since the γi are independent, where the Si are not, this perspective effectively
decouples the problem but normally, the transformation from source to pseudo sources is not
unique. Still, the inverse transformation from pseudo sources to sources is unique, thus if the
algorithms are implemented based on the description of the pseudo source level, the desired
result for s can be achieved afterwards. The basic technique behind this approach is an affine
mixing of independent Gaussian random variables (see Section A.1.4 for details on that): Let
g :=

∑h
i=1 %i, where %i is the rank of Ci. We will then generate the n-dimensional random variable

S with covariance
∑h

i=1 γiCi from an affine mixing of g independent one-dimensional Gaussian
distributed random variables:
Let S̃i be a %i-dim. Gaussian random variable with zero mean and a diagonal covariance matrix
C̃i := γiId%i (i.e., the components of S̃i are independent):

S̃i ∼ N%i(0, γiId%i), ⇒ p(s̃i|γi) ∝ exp
(
− s̃

t
is̃i

2γi

)
, ∀i = 1, . . . , h (2.9)

Now let the S̃i be independent for all i = 1, . . . , h and let S̃ :=[S̃t1, · · · , S̃th]t. It follows that
S̃ ∈ Rg and (2.9) states that:

p̃prior(s̃|γ) =
h∏
i=1

N%i(s̃i, 0, γiId%i) = Ng(s̃, 0, Σ̃s̃), with Σ̃s̃ = diag(γ1Id%1 , . . . , γhId%h)
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Next we will attain S with the desired covariance from an affine mixing of the S̃i. Let Ai be the
Cholesky factor of Ci, i.e., Ci = AiAt

i. Further let A = [A1, · · · ,Ah], and define S by:

S :=
h∑
i=1

AiS̃i = AS̃

It follows from the affine transformation lemma (A.1.4) that, given γ, S follows a Gaussian
distribution with zero mean and a covariance given by

Σs = AΣ̃s̃At =
h∑
i=1

γiAiAt
i =

h∑
i=1

γiCi (2.10)

Note that this means, that through this construction, Ci and γi have the same impact on
S as before. To formulate our model completely in terms of the pseudo sources, we define
L̃ :=[L̃1, · · · , L̃h] := L · [A1, · · · ,Ah] = L · A as the lead-field of the pseudo sources. This way
L̃s̃ = LAs̃ = Ls, and the complete model is determined by:

p̃like(b|s̃) ∝ exp
(
− 1

2σ2
‖b− L̃ s̃‖22

)
p̃prior(s̃|γ) ∝ |Σ̃s̃|−1/2 exp

(
−1

2
‖s̃‖2

Σ̃−1
s̃

)
= exp

(
−1

2

h∑
i=1

s̃tis̃i
γi
− 1

2

h∑
i=1

%i ln(γi)

)

phyper(γ) ∝
h∏
i=1

exp
(
−1

2
fi(γi)

)
and γi > 0

p̃post(s̃,γ|b) ∝ exp

(
−1

2

(
1
σ2
‖b− L̃ s̃‖22 +

h∑
i=1

s̃tis̃i
γi

+ %i ln(γi) + fi(γi)

))
(2.11)

Note that in contrast to (2.8) the posterior in (2.11) completely factorizes over γi. To see, that
this is an equivalent HBM to (2.8), it is more instructive to regard the following points, than to
rely on an algebraic transformation:

1. Both models encode our a-priori information in the same way:

? Our information on γ is given by phyper(γ) which is the same for both models.
? Our information on the elementary sources is encoded in

pprior(s) =
∫
pprior(s|γ) phyper(γ)dγ,

which is also the same in both models, due to the previous point and (2.10).

2. The interaction of the a-priori information with the data B is the same in both models:

? Since L̃S̃ = LS, it follows that plike(b|s) = p̃like(b|s̃) since s = As̃, therefore the
interaction of S and B is the same in both models.

? γ only interacts with B over s respectively s̃. Since the interaction of s respectively
s̃ with b is the same we can analyze the interaction of b and γ over s in both models.
As noted above, the relationship of γ and S = AS̃ is the same in both models,
thus the interaction with B is also the same. To see this explicitly, we can consider
p(γ|b) and p̃(γ|b) which describe this interaction in both models. Remind, that
p(γ|b) ∝ p(b|γ)p(γ), that B = LS + E and that, given γ, S ∼ N (0,Σs). Therefore,
p(b|γ) ∼ N (0,Σb), with Σb := Σε + LΣsLt (see A.1.4) and

p(γ|b) ∝ exp

(
−1

2

(
btΣ−1

b b+ ln |Σb|+
h∑
i=1

fi(γi)

))
(2.12)
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As a result, p(γ|b) relies on the source level of the model only through the projected
source covariance LΣsLt. Since LΣsLt = L̃Σ̃s̃L̃t, it follows that p(γ|b) = p̃(γ|b).

In summary, the pseudo source framework is an over-parameterization of the original generative
model with the intention to reduce dependencies between the main parameters. This eases the
implementation of many practical estimation algorithms and further speeds up their convergence
(Gelman et al., 2007).

Overfitting, Degrees of Freedom and Entropy: A common objection against the use of the
HBM presented here instead of simpler schemes like MNE is that the model comprises much
more parameters. This introduction of a large number of additional parameters that need to
be estimated seems counterproductive, since already in simpler models, the number of main
parameters n is much lager than the number of measurements m. To sum up the arguments, an
objection could be stated like this:

“The information given by the measurement is not sufficient to determine the free parameters
within the simpler model, so why should we make it even more complex?”

A misconception of three related but somewhat different concepts is underlying this statement:
Information, degrees of freedom and model complexity. A complete and sound treatment of
these issues is beyond the scope of this thesis, and needs a detailed commitment to statistical
estimation theory. In the following we will therefore sketch some considerations that will not
fully resolve the misconception, but will point out, in which aspects one needs to take more
care. We start with model complexity : The relation between the parameters of interest and the
observables is usually considered to be a simple one, but corrupted by noise. A complex model of
the parameters of interest within this situation might lead to overfitting : It will mainly describe
noise instead of the underlying relationship - the complexity makes it unspecific. To illustrate the
further arguments, we introduce a simple example of such a situation: Let yi be measurements
which originate from a noisy measurement of a simple linear relationship: yi = bxi+a+ε, where
a and b are constants and ε an independent additive noise term. A simple, but robust model in
this situation would be to assume a linear relationship yi = θxi + ϑ which can be fitted to the
data via a least-squares-fit, hence involve some residual error. A more complex model would,
e.g., be to assume a polynomial relationship of the order of the number of measurement points
yi. The parameters one has to estimate are the coefficients of the polynomial. This approach
can explain the data without residual error, but it rather fitted the noise than the underlying
relationship: It is neither robust against noise, nor has a good predictive power concerning the
value of y in other points than xi, e.g., when used to inter- or extrapolate the data. For these
reasons, a main paradigm in statistical modeling is to always start with a simple model in the
first place. People became aware of this danger for HBMs as well. Hierarchical models were
constructed with the intention to contain various different concrete models for S in one superior
model. This means that the model complexity with regard to both S and γ is very high as
mentioned in the general introduction to hierarchical modeling above. Yet, this must not mean
that for every fixed γ the model complexity with regard to S is still high: If this γ represents
a very specific model on S it can actually be quite low (for the concrete model considered in
Section 4.2, if γ is sparse, the model complexity for S is much lower than for the classical MNE).
As a result, if values for γ leading to a complex model for S have low probability within the
model, overfitting with regard to S will practically not occur. To illustrate that in our simple
example from above, think of a HBM for this situation as a polynomial with coefficients as
the main parameters of interest, and a similar number of hyperparameters, each controlling the
probable range of one main parameter in a proportional way. If the corresponding hyperprior
favors sparse hyperparameter configurations, the interplay with the likelihood will ensure that
only the coefficients for the zeroth and the first monomial will be nonzero, thus effectively the
simple model yi = θxi + ϑ is used for the inversion as well. However, the advantage over the
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simple model is that if the data would come from a higher order polynomial with few nonzero
coefficients, the HBM is likely to reconstruct this, too.
In summary, the important question is, given a certain prior depending on hyperparameters, how
do we have to choose the hyperpriors to enforce simple models on S? If we had some measure
of the model complexity as a function of γ, say c(γ), the choice p(γ) ∝ exp(−βc(γ)) would be
tempting4. This approach would lead to:

p(γ|b) ∝ p(b|γ)p(γ), with p(b|γ) =
∫
plike(b|s)p(s|γ) dS

and on the log scale:

log p(γ|b) ∝ log p(b|γ)− βc(γ) (2.13)

The density p(γ|b), i.e., the marginal posterior of γ, shows, how the model on S is adopted to b.
Equations (2.13) tell us that this adoption is controlled by two opposing terms in a regularization-
like scheme: The first is the marginal likelihood of b given γ and therefore represents the fit of the
model to the data. When maximizing p(γ|b) this term will lead to a high model complexity in
order to best fit the data. The second term tries to prohibit this increase of the model complexity,
hence the whole equation has the form “goodness of fit - penalization of model complexity” (van
der Linde, 2001). Coming from this abstract scheme, we will now examine how the situation
looks like for the Gaussian scale mixture model (2.8): Here, each Ci corresponds to a specific
model on S, thus a sparse γ should lead to a low model complexity. Computing (2.13) for the
concrete posterior (2.8) leads to (cf. (2.12)):

LII(γ) :=−2 log p(γ|b) ∝ btΣ−1
b b︸ ︷︷ ︸

data fit

+ log |Σb|︸ ︷︷ ︸
volume-based

regularization

+
h∑
i=1

fi(γi),︸ ︷︷ ︸
hyperprior-based

regularization

The cost function LII is called Type II cost function, its minima γ̂ correspond to probable
models on S given b. Interestingly, an explicitly sparsity-enforcing hyperprior is not even needed
to maintain a low model complexity in the Gaussian scale mixture model: The additional term
log |Σb| measures the volume formed by the total sensor covariance Σb

5. The volume of high
dimensional objects is minimized most effectively by collapsing single dimensions as close to
zero as possible due to the curse of dimensionality (opposed to an isometrically reduction of
all dimensions). That means that Gaussian scale mixture models favor sparse γ’s intrinsically.
The hyperprior can correct, damp or amplify this property, but if this is not explicitly intended
a Gaussian scale mixture model will hardly lead to an overfitting, regardless the large number
of additional parameters it can comprise (Wipf and Nagarajan, 2009).
This leads to the second point, the degrees of freedom: In classical statistics, calculating the
degrees of freedom is just a way to keep score on the remaining variability in the parameters, given
the observed data or after estimating certain quantities (which is mathematically the same). For
instance, assume we have observed/estimated the mean of a set of N independent points xi. We
might ask ourselves to which extend this determines the data, and how much variability is still
in it. At first, we have N degrees of freedom, as much as independent measurements. The
observation/estimation of the mean uses one degree of freedom, as the remaining variability
of the data (i.e., the residuals after subtracting the mean) is constrained to lie in the linear

4This means that the energy of the hyperprior is given by the measure of the model complexity rather than some
analogue of a physical energy (cf. Section 2.3) which clarifies that the hyperparameters are purely internal
parameters of the statistical model.

5The determinant of a positive symmetric matrix is a volumetric measure
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subspace determined by 1
N

∑
(xi − x̄) = 0 which has the dimension N − 1. That is the reason,

why a subsequent unbiased estimation of the variance is given by 1
N−1

∑
(xi − x̄)2 instead of

1
N

∑
(xi − x̄)2. Such classical estimators always correspond to linear operators which project

the residuals into a subspace in an orthogonal `2 sense (least-squares estimators). As a result,
the remaining variability of the data always lies in a proper linear subspace, and the degrees of
freedom the data is precisely the dimension of this subspace. This is the intuitive meaning of
degrees of freedom underlying the statement from above. In this sense, it is clear that the data
is not sufficient to determine the parameters of the model, since n > m. However, the estimators
encountered in inverse problems are usually not based on a least-squares projection of the data,
and so measuring the remaining degrees of freedom in terms of dimensionality is generally not
useful for these procedures. A concept called effective degrees of freedom is used instead. In our
setting (equation (1.5)) we start with m measurements. For classical Tikhonov regularization,
the effective degrees of freedom of the parameters given this observed data b is (Wahba, 1990):

τ = m−
m∑
i=1

σ2
i

σ2
i + λ

, where σi are the singular values of L (2.14)

The meaning of this expression can be explained by looking at the limits λ→ 0/∞: In general,
b gives m pieces of independent information. For λ → 0 (i.e., the pseudo inverse, cf. 1.3.2) it
follows τ = 0, so the estimation “consumes” the whole information given by the data. If the
data is contaminated with noise, this leads to unwanted results, as the information given by the
noise is also used completely. The limit λ→∞ leads to τ = m, which means, that the method
actually uses none of the information provided by b, which is clear, since s = 0 for λ → ∞
independent from b. For every λ in between, τ reflects, how the variability of b is projected to
the variability of s. This variability expresses the number of independent “units” of information
that the method can use to determine the values of the main parameters in some way. If it is
less than the number of these main parameters (as in our case, since τ < m < n) it is clear that
not every main parameter is free to vary on the full range of its possible values independent
from all other parameters, but dependencies between the values of the main parameters are
not avoidable. For MNE, the spatial structure of these dependencies is obvious: Neighboring
locations are forced to show similar activity, leading to a blurred solution, which is not able to
retain the spatial resolution offered by the source grid. In Figure 2.1 the MNE for a single dipole
is depicted using a different number of source space nodes: A grid of 4 × 4 MEG gradiometers is
located in a plane parallel to a plane containing a grid of source nodes (see Calvetti et al., 2009
for details). For the different source spaces, a hierarchy of three source grids that emerge from

(a) k = 7×7, λ = 0.12, τ = 5.41 (b) k = 13×13, λ = 0.45, τ = 5.48 (c) k = 25×25, λ = 1.76, τ = 5.52

Figure 2.1: MNE using different source grid resolutions. Larger Versions of these figures can be found
in the appendix on page XV
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each other by successive refinement is used. The regularization parameter λ has been chosen
according to the discrepancy principle (assuming a noise level of 5%, see Section 4.4.1 and 4.4.3).
The effective degrees of freedom have been calculated according to formula (2.14). In each figure,
the cones for the MNE solution have been scaled individually. Note that the effective degrees
of freedom of the model, τ , hardly change, which means, that the information consumed by the
MNE is almost equal, regardless the number of k. This is also visible in the figures: Adding
new source space nodes does not add new features to the solution. Actually, the current values
in these points could have been interpolated from their neighbors as well, without changing the
result in a significant way (we have done that for illustration, see Figure A.5 on page XIV in the
appendix). This means that by increasing k beyond a certain value, no new “free” parameters
are added to the model, but parameters which are chained to the other parameters so strong
that their inclusion does not offer any new insights6. For sparse reconstruction methods the
spatial structure of the dependency between the parameters is more subtle, it is an inhibitory
structure: If a bit of the variability of the data is used to determine the value of one parameter,
several other parameters are forced to be zero, thus none of the variability is spent for them.
In summary, even for simple linear inverse methods, the meaning of degrees of freedom is not
trivial anymore. For nonlinear, like most of the methods used for HBMs, this will be even less
intuitive (I am not even aware of a general definition). At least, the pure number of “free”
parameters in the model is not the important point but the uncertainty concerning their value
(i.e., how “free” they are really allowed to be).
Note that the reason for this dilemma relies in the fact that we first discretized the continuous
inverse problem (cf. Section 1.3) and then formulated our methods in this discrete setting. There
is no guarantee that this procedure leads to a consistency between different discretization levels.
Especially in Bayesian inversion it is known that a consistent, discretization invariant formulation
of a-priori information needs some care (Lassas and Siltanen, 2004; Kaipio and Somersalo, 2005;
Lassas et al., 2009). Another approach is to stick to the continuous formulation of the inverse
problem as long as possible and to formulate the inverse methods in the continuous setting as
well. Discretization is only performed for the practical computation at the end. This approach
is quite common in the regularization community (Engl et al., 1996). Concerning Bayesian
inversion and especially hierarchical modeling, the theoretical foundation for this approach is
far less developed until now (for a discussion, see e.g., Lassas et al., 2009; Helin and Lassas,
2009; Helin, 2010b,a). Yet, if it is possible to formulate a continuous stochastic model, the
Bayesian approach offers interesting tools to infer, examine and enhance discrete models derived
from it: The field of statistical model reduction is concerned with accounting for discretization
errors explicitly by the use of enhanced noise models and inverse crimes in conjunction with
discretization (Kaipio and Somersalo, 2005, 2007).
Finally, we address the last remaining point of this paragraph, i.e., information:
Statements like “The information given by EEG/MEG measurements is not sufficient to fully
determine the source activity” are problematic: It aims at the under-determinateness of (1.4) or
respectively (1.5), i.e., the continuous or discrete forward operators Lem or L are not injective.
For Lem, it is often argued that von Helmholtz already showed this fact (von Helmholtz, 1853).
However, he showed that it is true assuming arbitrary current distributions jimp. Current
distributions originating from brain activity may not take arbitrary form but may rather show
very characteristic features due to the properties of the underlying network dynamics. Whether
Lem is still not injective on this subset Jbrain is not known yet. For the discrete case, it is clear
that L is not injective on Rn. But the model of brain currents in Section 1.3 that led to (1.5)
has to be considered a provisional one in lack of a more appropriate image of brain activity. It
assumes that J is a linear vector space, which is probably false: The simplest fact to see this

6It is actually not the pure number of k which is important, but rather if all locations in the source space that
have a characteristic gain vector are included. Adding new locations that have similar gain vectors to already
included ones does not improve the solution.
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is that the brain current amplitude is surely not unbounded. A more subtle reason is that the
currents originate from highly non-linear processes which makes it unlikely that, for two currents
j1, j2 that originate from this activity, j1 + j2 also represents a reasonable outcome of it. To
summarize, if the equations are really under-determined on the appropriate domains cannot be
stated so far.
Another aspect of the term information in this context is that one should be careful when using it
in conjunction with the discretization of model expressed by n: The measurement and hence the
information given by it is a-priori independent of our modeling of the situation and of our usage
of the measurements. A source of confusion might be that a quantification of the information in
terms of Shannon entropy is only possible with respect to a given model. Still, this only means
that some models are more appropriate to describe the underlying reality and cam therefore
take advantage of the measurements in a better way. Apparently, this topic also brings us back
to the discussion of the discretization level from above. A continuous modeling of the whole
situation might also be advantageous here.
We conclude here and postpone a more detailed and concrete discussion of the above topics to
the work subsequent to this thesis. The intention of this rather abstract paragraph was solely
to address overhasty judgments about hierarchical models in the context of EEG/MEG.



3 Algorithms and Implementation

This chapter outlines strategies to compute the two fully-Bayesian estimates, i.e., the Full-MAP
and the Full-CM estimate. We will propose and discuss a class of algorithms that rely on
alternated conditional moves through the pseudo source space. For this we will extend ideas
from Nummenmaa et al. (2007a); Calvetti et al. (2009) who proposed specific members of this
class of algorithms for the covariance set C =

{
eie

t
i ⊗ Idd, i = 1, . . . , k

}
. Using this set, the real

source vectors si∗ coincide with the pseudo sources s̃i (Ai = ei ⊗ Idd for all i = 1, . . . , k, since
h = k) and (2.8) already factorizes over γi. The following chapter gives a generalized description
of these specific algorithms and extends them to handle arbitrary covariance sets by means of
the pseudo source decomposition.

3.1 Motivation

None of the point estimation methods for HBM presented in Section 2.4.2 can be computed
explicitly. Thus, numerical approximations of the points (s̃CM,γCM), (s̃MAP,γMAP) ∈ Rg × Rh

have to be found1. Within this thesis we will rely on approximation schemes that step through
Rg × Rh in a more or less directed fashion:

? For approximating (s̃MAP,γMAP), we seek to find a sequence (s̃i,γi), i = 1, . . . ,M such
that

max
i=1,...,M

{p̃post(s̃i,γi|b)}
M→∞−−−−→ p̃post(s̃MAP,γMAP|b)

Another desirable property of the sequence would be that it actually converges to (s̃MAP,γMAP).
In the following, we will examine sequences where the computation of the subsequent state
(s̃i+1,γi+1) only relies on the current state (s̃i,γi).

? For approximating (s̃CM,γCM), one has to compute the integral∫
Rg×Rh

(s̃,γ) p̃post(s̃,γ|b) ds̃ dγ

numerically. Due to the high dimensionality of the source space, this is intractable by
means of traditional quadratures. Integration by Monte Carlo methods can avoid these
difficulties, because the rate of convergence does, in principle, not depend on the dimension
g. For our application, the best would be if one could find a sequence (s̃i,γi), i = 1, . . . ,M
independently drawn from p̃post(s̃,γ|b), because in this case, the law of large numbers would
guarantee that

1
M

M∑
i=1

(s̃i,γi)
M→∞−−−−→ (s̃CM,γCM) =

∫
Rg×Rh

(s̃,γ) p̃post(s̃,γ|b) ds̃ dγ

almost surely and in `1 with rate O(M−1/2), i.e., the empirical mean of the sequence con-
verges to the expected value of the posterior (Klenke, 2008). A difficulty in our setting is
that the posterior is not given in a form that allows for drawing independent samples, since
it is only known up to a normalizing constant (the model-evidence) and does not belong

1To stress that, we will speak of CM and MAP approximation instead of estimation in the following.

28
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to a class of distributions for which such sampling schemes are known. However, due to
the strong ergodic theorem, the above convergence and its rate still hold if the sequence is
dependent, but originates from an ergodic Markov chain that has p̃post(s̃,γ|b) as its equilib-
rium distribution (Klenke, 2008). Techniques to construct such chains are called Markov
chain Monte Carlo (MCMC ) methods. Some of them are able to sample the posterior
without knowing the model-evidence. They either work with ratios of probabilities only,
or sample along some coordinates in one step while keeping the others fixed, such that
the posterior conditioned on the fixed coordinates takes a simple form. For details on the
theory of Markov chains and MCMC techniques, we refer to MacKay (2003); Kaipio and
Somersalo (2005); Klenke (2008). Practically, the dimension g affects the time to derive
a new sample, which does not affect the rate of convergence, but can render the method
too slow to be a practical alternative to MAP-estimation. The speed of convergence relies
heavily on the method used to construct the chain, and its mixing properties (MacKay,
2003). Furthermore, the generation of each sample point usually requires one or more
evaluations of the forward mapping.
In summary, we will compute an approximation of the CM estimate by generating a se-
quence (s̃i,γi), i = 1, . . . ,M such that

1
M

M∑
i=1

(s̃i,γi)
M→∞−−−−→ (s̃CM,γCM) =

∫
Rg×Rh

(s̃,γ) p̃post(s̃,γ|b) ds̃ dγ

Since we rely on a Markov chain for the generation of the sequence, the Markov property
assures that within this scheme, the generation of the subsequent state (s̃i+1,γi+1) only
relies on the current state (s̃i,γi), alike to the scheme we will use for approximating the
MAP estimate.

The practical challenges for constructing the sequences for both MAP and CM approximation
are the high dimension of the pseudo source space, and the potentially large number of hy-
perparameters. The main concept we will use to tackle this challenge is to exploit the special
structure of the HBM in the pseudo source framework: The transfered model (2.11) is quadratic
with respect to s̃ and factorizes over γi. An efficient way to exploit this for both MAP and CM
approximation is to rely on alternated conditional moves only.

3.2 Alternated Conditional Walks for HBM

Basic Conditional Moves

We need to define four basic conditional moves. For this, remember that a conditional density
is always proportional to the corresponding joint density by a factor only dependent on the
conditioned parameter (cf. Section 2.2):

Os-Step: For a given point (s̃i,γi), set (s̃i+1,γi+i) := (s̃CMAP(γi),γi), where s̃CMAP(γ) is the
MAP estimate of S̃ conditioned on both γ and b:

s̃CMAP(γ) := argmax
s̃
{p̃post(s̃|γ, b)} = argmax

s̃
{p̃post(s̃,γ|b)} (3.1)

Oγ-Step: For a given point (s̃i,γi), set (s̃i+1,γi+1) := (s̃i,γCMAP(s̃i)), where γCMAP is the MAP
estimate of γ conditioned on both S̃ and b:

γCMAP(s̃) := argmax
γ
{p̃post(γ|s̃, b)} = argmax

γ
{p̃post(s̃,γ|b)} (3.2)

Os and Oγ thus optimize the posterior in the direction of only one component.
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Ss-Step: For a given point (s̃i,γi), set (s̃i+1,γi+1) := (s̃C(γi),γi), where s̃C(γ) is drawn from
the density of S̃ conditioned on both γ and b:

s̃C(γ) :∼ p̃post( · |γ, b) ∝ p̃post( · ,γ|b) (3.3)

Sγ-Step: For a given point (s̃i,γi), set (s̃i+1,γi+1) := (s̃i,γC(s̃i)), where γC is drawn from the
density of γ conditioned on both S̃ and b:

γC(s̃) :∼ p̃post( · |s̃, b) ∝ p̃post(s̃, · |b) (3.4)

Ss and Sγ thus sample the posterior for one component conditioned on the other.

Composite Conditional Walks

The four basic moves can be composed to a cyclic scheme to generate a sequence in Rg × Rh:

Algorithm 1 (Alternated Weighted Walks)
Given γ0 ∈ Rh, w : N→ R, M ∈ N, do
Initialize s̃0 = 0.
For i = 1, . . . ,M do

Set (s̃i,γ∗) = w(i)Os[(s̃i−1,γi−1)] + (1− w(i))Ss[(s̃i−1,γi−1)]
Set (s̃i,γi) = w(i)Oγ[(s̃i,γ∗)] + (1− w(i))Sγ[(s̃i,γ∗)]

Output: (s̃i,γi), i = 1, . . . ,M .

Note that, as intended, the computation of (s̃i+1,γi+1) only relies on the current state (s̃i,γi).
Within this thesis, we will mainly consider alternated weighted walks for two choices of w:

? Alternated sampling (AS ), i.e., w := 0.

? Alternated optimization (AO), i.e., w := 1.

Subsequent to the thesis, hybrid schemes for MAP approximation, where w is not constant, will
be examined, too. Note, that w /∈ [0, 1] was not excluded, in certain situations, even w < 0 can
be suitable, e.g., to escape from local maxima of the posterior. In Figure 3.1 an example of a
AS and a AO walk are sketched for a multimodal posterior distribution.

Computing Results of Sequences

Given a sequence (s̃i,γi), i = 1, . . . ,M , three quantities are interesting for MAP and CM ap-
proximation:

? The last point, i.e.,
End [(s̃i,γi), i = 1, . . . ,M ] := (s̃M ,γM )

? The point with the highest posterior probability, i.e.,

MaxP [(s̃i,γi), i = 1, . . . ,M ] := argmax
i
{p̃post((s̃i,γi)|b)}

? The empirical mean of the sequence, i.e.,

EmM [(s̃i,γi), i = 1, . . . ,M ] :=
1
M

M∑
i=1

(s̃i,γi)
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Figure 3.1: Sketch of alternated weighted walks for a multimodal posterior (plotted via contour lines).
Red stars mark subsequent states, circles mark half steps. Left: AS; the blue lines corre-
spond to Ss steps, the green lines to Sγ steps. Right: AO walk; the blue lines correspond
to Os steps, the green lines to Oγ steps.

3.3 Alternated Conditional Algorithms for HBM

We are now ready to formulate the algorithms for MAP and CM approximation that we will
use in our studies:

Algorithm 2 (Alternated Sampling for CM approximation (AS CM))
Given a burn-in size Q and a sample size R do

Use AS with M = Q and γ0 = E(γ) to generate the burn-in sequence (s̃bi ,γ
b
i), i = 1, . . . , Q.

Use AS with M = R and γ0 = γbQ to generate the main sequence.
Output: (s̃AS CM,γAS CM) = EmM [(s̃i,γi), i = 1, . . . , R].

This is a blocked Gibbs sampling method (MacKay, 2003; Gelman et al., 2003), and was used
for CM approximation in Nummenmaa et al. (2007a); Calvetti et al. (2009) as well. Via a
balance condition, one can show that the sequence is forming an ergodic Markov chain (see,
e.g., MacKay, 2003; Gelman et al., 2003) which has the posterior as its equilibrium distribution.
Therefore, its empirical mean converges to the CM estimate (cf. Section 3.1). This sampling
technique is a very simple, but also very powerful one. A main advantage over other MCMC
schemes is that it does not need any manual tuning of sampling parameters.

Concerning MAP approximation, it is important to stress that the basic AO scheme is apparently
only locally convergent. If the posterior is multimodal (a situation we will face and illustrate in
our studies in Chapter 4) the solution found by the AO scheme depends on the initialization of γ
and may thus be suboptimal (cf. Figure 3.1). We propose three different strategies to initialize
and compute a MAP approximation here, and examine their performance in the concrete studies.
AO MAP will abbreviate alternated optimization for MAP approximation in the following.

Algorithm 3 (Uniformly Initialized AO MAP (uAO MAP))
Given an iteration number T and an initialization rule γini(phyper) ∈ R do

Use AO with M = T and (γ0)j = γini(phyper), ∀ j = 1, . . . , h to generate a sequence
(s̃i,γi), i = 1, . . . , T .

Output: (s̃uAO MAP,γuAO MAP) = End [(s̃i,γi), i = 1, . . . , T ].
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As possible initialization rules, we will normally use the expectation or the mode of the single
component hyperprior distributions phyper(γi).

Algorithm 4 (Conditional Mean Initialized AO MAP (cmAO MAP))
Given a burn-in size Q, a sample size R and an iteration number T do

Use AS CM with burn-in size Q and sample size R to generate a CM approximation
(s̃AS CM,γAS CM).
Use AO with M = T and (γ0) = γAS CM to generate a sequence (s̃i,γi), i = 1, . . . ,.

Output: (s̃cmAO MAP,γcmAO MAP) = End [(s̃i,γi), i = 1, . . . , T ].

Algorithm 5 (Multiple Conditional Mean Initialized AO MAP (McmAO MAP))
Given a number of seeds U , a burn-in size Q, a sample size R and an iteration number T do

For l = 1, . . . , U , do
Use cmAO MAP with burn-in size Q, sample size R and iteration number T to generate
(s̃cmAO MAP,γcmAO MAP) and set (s̃l,γl) = (s̃cmAO MAP,γcmAO MAP).

Output: (s̃,γ)McmAO MAP = MaxP [(s̃i,γi), i = 1, . . . , U ].

The McmAO MAP approach seems a bit heuristic at this point. However, it is intended to be
used with very small values for Q and R compared to cmAO MAP. In addition a blocked imple-
mentation of the for loop is used, i.e., all U cmAO MAP results are computed simultaneously
(see Section 3.6). It will turn out, that this way, Mcm MAP yields the best MAP approximation
of the above algorithms at moderate computation times.

3.4 Implementation for Gaussian Scale Mixture Models

In this section, the practical implementation of the four basic conditional moves (cf. Section
3.2) for the HBM given by (2.11) will be discussed.

3.4.1 Implementation of Os and Ss Steps

The fact that the energy of the posterior is quadratic with respect to s̃ allows that both the Os
and the Ss step can be computed directly by solving systems of linear equations. We start with
the computation of the Os step. Although not apparent at this point, we will then see that the
Ss step can be implemented in a surprisingly similar fashion.
In (3.1) the values of the hyperparameters are fixed, and the minimization does not depend on
the hyperprior. Thus we effectively compute the WMNE (cf. 1.3.2) for the diagonal weighting
matrix D(γ) := Σ̃s̃(γ):

s̃CMAP(γ)
(2.11)

= argmin
s̃∈Rg

{
‖b− L̃s̃‖2 + σ2‖D−1/2s̃‖2

}
(1.6)
= DL̃t

(
L̃DL̃t + σ2Idm

)−1
b (3.5)

Nevertheless, concerning computation time and stability, it is preferable to solve the correspond-
ing relaxed weighted least squares problem (cf. A.1.1) iteratively:

(3.5) A.1.1⇐⇒
[

L̃
σD−1/2

]
s̃CMAP(γ) ls=

[
b
0

]
(3.6)

⇐⇒
[

L̃ D1/2

σIdg

]
y

ls=
[
b
0

]
with y = D−1/2 s̃CMAP(γ) (3.7)

This can be done by using Krylov subspace methods such as the conjugate gradient least squares
method (CGLS ) (see Section 3.5) with the special preconditioning by D−1/2(γ) as formulated



CHAPTER 3. ALGORITHMS AND IMPLEMENTATION 33

in (3.7). If the hyperparameters were fixed in our model, this would correspond to a whitening
transform of the random variable S̃ (cf. A.1.5). Applied to iterative solvers for inverse problems,
this technique is called priorconditioning (Calvetti and Somersalo, 2007b). In our hierarchical
framework, the prior covariance itself is not fixed but relies on the fixation of the hyperparameters
on their current values. The idea of using this present state of information, updated in every step
of composite conditional walks is referred to as a hyperpriorconditioning (Calvetti et al., 2009).
Note that the uAO MAP algorithm is a generalization of the Iterative Alternating Sequential
(IAS ) algorithm which was introduced by Calvetti and Somersalo (Calvetti and Somersalo,
2007a, 2008a; Calvetti et al., 2009), inspired by a similar, more general algorithm called half
quadratic minimization (Aubert and Kornprobst, 2006). The IAS algorithm relies on a a specific
HBM, and uses formulation (3.7) with the CGLS method stopped after a few iterations.
The sampling of s̃C in the Ss step is done indirectly: In principle, since the hyperparameters are
known one can calculate the mean and the variance of the resulting Gaussian distribution via:

Ep(s̃|γ,b)(s̃) = DL̃t
(

L̃DL̃t + σ2Idm
)−1

b (3.8)

Covp(s̃|γ,b)(s̃) = D−DL̃t
(

L̃DL̃t + σ2Idm
)−1

L̃D
(A.8)
=
(

D−1 +
1
σ2

L̃tL̃
)−1

(3.9)

and sample s̃C from this distribution directly (see the second subsection of Section A.1.4 for the
computation and the first for the sampling). Even so, similar to the Os step this is computation-
ally expensive and especially the computation of the covariance matrix is highly unstable, since
D is often almost singular. Instead, one can use a mixing strategy (cf. Section 2.4.3, A.1.4), i.e.,
we draw ωm and ωg from standard normal distributions of dimension m and g and solve:[

L̃
σD−1/2

]
s̃C(γ) ls=

[
b
0

]
+ σ

[
ωm
ωg

]
(3.10)

The proof that the solution s̃C(γ) of (3.10) is really distributed according to (3.8) and (3.9)
is done in the appendix (see A.1.4). Comparing (3.6) and (3.10) immediately shows that the
computations for the Os and the Ss step can be carried out in a similar fashion, only the right
hand side of the least squares problem is modified. Thus everything stated above also applies to
the Ss step, especially for the preconditioning by D−1/2(γ). For alternated weighted walks with
w /∈ {0, 1}, the computations of both steps can also be combined relying on this formulation.
Using preconditioned iterative solvers for the problems (3.6) and (3.10) was proposed in Calvetti
et al. (2009) and seems to be a canonical choice with regard to the high dimension of the problem.
The advantage is that these schemes can easily be transferred to other fields of inverse problems,
where the forward mapping is not given in explicit matrix form (Kaipio and Somersalo, 2005;
Calvetti and Somersalo, 2007a,b, 2008a,b). In addition, we will see in Section 3.6 that iterative
solvers allow for the construction of blocked inversion schemes, where multiple right hand sides
are inverted simultaneously which results in a considerable gain in speed. Consequently, for the
work on this thesis, much efforts were made to optimize these iterative approaches, and most of
the results were computed with them. Recently, a very simple alternative implementation was
developed that is competitive to the iterative approaches in terms of computation speed: Due
to the small number of sensors (we usually use m < 150), the block-structure of (3.6) and (3.10)
and the identity (A.8), the explicit solution of the systems can be computed very efficiently:
Starting from (3.10) (the formula for (3.6) follows by setting ωm = 0, ωg = 0), we multiply by
σ−1 and from A.1.1 and (A.8) it follows that

s̃C

A.1.1=
(

D−1 + σ−2L̃tL̃
)−1 [

σ−1L̃ D−1/2
]([σ−1b

0

]
+
[
ωm
ωg

])
(A.8)
=

(
D−DL̃t

(
L̃DL̃t + σ2Idm

)−1
L̃D
)(

L̃t(σ−2b+ σ−1ωm) + D−1/2ωg

)
This formula can be implemented in a straight forward manner:



34 3.5. CONJUGATE GRADIENT METHOD FOR LEAST SQUARES PROBLEMS

Algorithm 6 (Analytical Os/Ss Solution)

1. Set r =
(

L̃t(σ−2b+ σ−1ωg) + D−1/2ωg

)
;

2. Set s1 = D r;

3. Set t = L̃ s1;

4. Set Σ̃b =
(

L̃D1/2
)(

L̃D1/2
)t

+ σ2Idm;

5. Solve Σ̃b x = t;

6. Set s2 = DL̃t x;
7. The solution is given by s̃C = s1 − s2;

Remember that the multiplication with D can be performed componentwise. The computation
of the projected source covariance L̃DL̃t within step 4. is the most computationally intensive
part of the algorithm, solving the linear system in step 5. is far less demanding: The system is
only of size m×m and is symmetric positive definite. A solution via Cholesky decomposition is
still fast enough to be negligible in comparison to the matrix-matrix multiplication in step 4.
The solution of (3.10) with this algorithm is considerably faster than with iterative solvers (see
A.1.10), and finding an optimal implementation is less demanding. Furthermore, it yields the
exact solution of (3.10) within the bounds posed by ill-condition and finite precision, and no
stopping criteria have to be chosen ad hoc. Another advantage is that the computation time is
effectively independent of the right hand side, which is not the case for the iterative solvers we
applied: Empirically, it was observed that more complex source configurations also result in a
slower convergence of the CGLS algorithm.

3.4.2 Implementation of Oγ and Sγ Steps

The fact that the posterior factorizes over γi enables that both Oγ and Sγ steps can be computed
componentwise. Extracting the hyperparameter dependent part of (2.11) gives

p̃post(γ, s̃|b) ∝ exp

(
−1

2

h∑
i=1

(
s̃tis̃i
γi

+ %i ln(γi) + fi(γi)
))

=⇒ p̃post(γi, s̃|b) ∝ exp
(
−1

2

(
s̃tis̃i
γi

+ %i ln(γi) + fi(γi)
))

(3.11)

Dependent on the specific hyperprior, maximizing (3.11) for γi to compute the Oγ step can
be solved explicitly or has to be solved by a numerical approach, e.g., a Newton’s method.
Concerning the Sγ step, techniques like the inverse cumulative distribution method (Kaipio
and Somersalo, 2005) or slice sampling (Neal, 2003) can be used to handle a wide range of
possible hyperprior. However, the choice of the inverse gamma distribution as a hyperprior
causes (3.11) to be inverse gamma distributed as well (due to the conditional conjugacy of prior
and hyperprior), and once the corresponding distribution parameter are computed, standard
sampling methods for gamma distributions can be used.
Concrete implementations will be discussed for the specific HBM introduced in Chapter 4.

3.5 Conjugate Gradient Method for Least Squares Problems

The solution of a linear least squares problem Gx ls= c with G ∈ RM×N ,M > N, rank(G) = N
is given by the solution of the normal equations (cf. A.1.1):

GtGx = Gtc (3.12)
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But especially in many applications in inverse problems, it is not preferable to calculate and
store GtG explicitly and solve (3.12) by some direct or iterative method: GtG is usually large
and dense and its condition is even larger than the condition of G alone. Consider, e.g., (3.7),
where GtG = (D1/2L̃tL̃D1/2 + σ2Idg) ∈ Rg×g. In addition, in many applications, the system
matrix (which is part of G, cf. (3.6)) is not given explicitly or it is not preferable to compute
it, but its action (and the action of Gt) on vectors can be computed with ease (e.g., in image
deblurring, it is advantageous to compute the convolution with the point spread function by
means of the fast Fourier transformation (FFT )).
For such cases, specific iterative solvers have been developed that work with matrix-vector
products involving G and Gt alone. These solvers are problem specific implementations of
iterative Krylov subspace methods (see Björck, 1996 for a general introduction). Define

rl := Gt(c−Gxl)

K†l (G, c) := span
{

Gtc, (GtG)Gtc, . . . , (GtG)l−1Gtc
}
,

as l -th residual error and Krylov subspace of the normal equations. Krylov subspace methods
seek to minimize ‖rl‖ over K†l (G, c):

xl := argmin
x∈K†l (G,c)

‖Gt(c−Gx)‖2 (3.13)

Mathematically, all methods would result in the same sequence of approximations xl, and
reach the exact solution after n steps. Still, as discussed above, due to finite precision and
ill-conditioning, naive implementations might need more than n steps, might not converge to
the exact solution or might not even converge at all. The concrete method we will use to solve
(3.13) is called conjugate gradient least squares (CGLS ) or conjugate gradient normal residual
(CGNR) method. It can also be derived as a line-search optimization method for a quadratic
functional:

Algorithm 7 (CGLS Algorithm)
Given the right hand side c, initialize:

x0 = 0;
d0 = c−Gx0;
r0 = Gtd0;
p0 = r0;
y0 = Gp0;

Iteration: For l = 1,2,... until a stopping criterion is satisfied

α =
‖rl−1‖
‖yl−1‖

;

xl = xl−1 + αpl−1;
dl = dl−1 − αyl−1;
rl = Gtdl;

β =
‖rl‖2

‖rl−1‖2
;

pl = rl + βpl−1;
yl = Gpl;
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This specific implementation of the ordinary conjugate gradient method needs one multiplication
with G and one with Gt per iteration (or an equivalent implementation of this operation),
but does not need the explicit formation of GtG. Nevertheless, without good preconditioning
at hand, more stable (but computationally more expensive) implementations like LSQR or
GMRES should be used (Björck, 1996): Note that the right hand side c enters the algorithm
only in the initialization, hence ill-conditioning and finite precision play an important role for
the convergence. With the preconditioning introduced in Section 3.4 no problems have been
encountered for CGLS in practice. To attain a good computation speed for systems like (3.10),
it is crucial to exploit the special structure of G: Note that it consists of three matrices with
different properties: L̃ is dense but small compared to the others, D1/2 is a diagonal matrix and
σIdg the scaled identity. Computing and storing G (necessarily as a sparse matrix) and using
it directly to calculate its action on vectors results in unnecessary overhead. Decomposing this
mapping, computing the subparts and reassembling the results afterwards leads to an enormous
speed-up.

3.6 Single vs. Blocked Inversion Schemes

For our studies in Chapter 4, a large number of different measurements b have to be considered.
Normally, one would invert each b separately using the approximation algorithms discussed in
Section 3.3. This would result in a linear dependence of the computation time on the number
of samples. However, using the pseudo source decomposition ensures that the action of both
operators that depend on the right hand side in the Os and Ss step, i.e., D1/2 and σIdg2,
can be computed by componentwise multiplication. This, and the special form of the CGLS
algorithm allows us to design a blocked inversion scheme, where all measurements b are inverted
simultaneously. The basic advantage of this is that the most time-consuming part of the CGLS
algorithm, i.e., the matrix-vector multiplications of L̃ or L̃t with the corresponding iteration
vectors are replaced by matrix-matrix multiplications of L̃ or L̃t with corresponding iteration
matrices. The number of columns of these matrices is given by the number of right hand sides b.
Especially when implemented on programming platforms that are optimized for array operations
and used on modern multi-core CPU or even GPU devices (see Section 3.8) the computation time
for matrix-matrix multiplications A ·X is only a fraction of the time needed for a single matrix-
vector multiplication A · x times the number of columns of X. This issue will be illustrated
in more detail in the appendix in Section A.1.10. The implementation needs some care and
especially for the AS scheme, a good memory management is needed as well.
Algorithm 6 to compute the analytical solution of the Os and Ss step cannot be formulated in
a blocked form. As a consequence, using the blocked inversion scheme with CGLS outperforms
using the single inversion scheme with the analytical solution for large studies (see Section
A.1.10).

3.7 Computation of the Earth Mover’s Distance

To compute the pth-EMD (see Definition 8 in Section 1.3.3) between real and estimated source
activity, both are transferred into discrete probability distributions: For the real source activity
jreal, a suitable discretization by some localized basis functions ψi(x) (not necessarily the ji,l
used for the source space discretization) has to be chosen:

jreal(x) ≈
τ∑
i=1

Mi · ψi(x) ∀x ∈ Ω

2In our studies we will assume a fixed noise level, i.e., σ will be computed from b for each b separately rather
than being fixed for the whole study (cf. 4.4.1)
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Now let r̆i be the midpoint of supp(ψi) and define a discrete signature P by:

P = {(p1, wp1), . . . , (pτ , wpτ )} with pi := r̆i; wpi :=
|Mi|
Mtot

; Mtot =
τ∑
i=1

|Mi|

For the estimated CDR, we define a signature Q by:

Q = {(q1, wq1), . . . , (ql, wqk)} with qi := ri; wqi :=
‖ si∗ ‖2
atot

; atot =
k∑
i=1

‖ si∗ ‖2

Finally, define the distance matrix Dp by letting Dp
(i,j) be the pth power of the 3D-Euclidean

distance between pi and qj . Now we are ready to formulate the computation of the pth-EMD
between P and Q as a linear programming problem as formulated by Kantorovich (Kantorovich,
1942; Kantorovich and Gavurin, 1949). In our setting, computing (1.7) becomes:

Definition 9 (Reformulation of the EMD) With the above definitions, find a transport plan
Γ ∈ Rτ×k that minimizes the work

W(P,Q,Γ) =
τ∑
i=1

k∑
j=1

Dp
i,j · Γi,j (3.14)

subject to the following constraints:

Γi,j ≥ 0, 1 ≤ i ≤ τ, 1 ≤ j ≤ l (3.15)
τ∑
i=1

Γi,j = wpi , 1 ≤ i ≤ τ (3.16)

k∑
j=1

Γi,j = wqj , 1 ≤ j ≤ l (3.17)

(3.18)

The minimal work resulting from this computation is the EMD between P and Q. The con-
straints (3.15) - (3.17) ensure that Γ is a valid transport plan:

(3.15) ensures that the mass is transfered from P to Q and not vice versa.

(3.16) determines the amount of mass that has to be transfered from one position.

(3.17) determines the amount of mass that has to be transfered into one position.

There are efficient algorithms to solve this linear programming problem exploiting its special
structure. However, in the studies we are performing for this thesis, the size of P is usually
very small, and the problem can be solved with standard linear programming toolboxes with
negligible time costs. The transformation of (3.14) into standard form can be found in Section
A.1.6.

3.8 Implementation

The main advantage of the hierarchical modeling is the flexible, modular, level-based construc-
tion. To retain these advantages, an object-oriented implementation of the whole scheme is
desired. Matlab is an adequate environment for this intention, as it supports object oriented
programming and is a good choice from both computational and practical point of view: The
computationally intensive parts are the CGLS-iterations, which mainly consist of matrix-vector
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multiplications in the single inversion scheme and matrix-matrix multiplications in the blocked
inversion scheme. It is hard to beat Matlab’s performance on these tasks with own handcrafted
code, especially due to the implicit multi-threading capabilities. Furthermore, Matlab offers the
possibility to easily test alternative solvers and sampling routines. Most of the existing toolboxes
for EEG/MEG are written for Matlab, and after the thesis, we would like to compare our results
with methods like VB-estimation, implemented, e.g., in SPM83. Furthermore, from Matlab as
a basis platform one can easily call other, command line driven, programs: The toolbox pro-
vides interfaces to SCIRun4 for visualization and to SimBio5 for the FEM forward simulation in
an automated fashion. Its working title is BayesNEMESIS (Bayesian NeuroElectroMagnEtic
Source Imaging Software). A detailed description of its structure and a discussion of particular
implementations is not topic of this thesis, and we will thus only give a rough sketch of its
contents here. The toolbox relies on three main classes: Model, prior and estimator:

? The model class serves as:

∗ An interface to create and modify forward models for EEG/MEG computations. In
particular, three types of models are supported:

1. Isotropic rectangular models: A homogeneous isotropic conductivity for the whole
space is assumed, and source nodes and sensors are arranged in regular grids. The
lead-field matrix can be calculated by an explicit formula in this case (see e.g.,
Calvetti et al. (2009)) and the visualization is carried out by Matlab (see, e.g.,
Figure 2.1).

2. Anisotropic multi-layered sphere models: The volume conductor consists of multi-
ple concentric spheres and each layer is given a homogeneous conductivity, where
anisotropic conductivities are allowed. The lead-field matrix is calculated by an
asymptotic series expansion formula Munck and Peters (1993); De Munck (1988)
and the visualization is carried out by Matlab. This model is not used within
this thesis.

3. Tetrahedral Finite Element head models: The main class of models that are used
within this thesis. Their use and creation will be illustrated in Section 4.3.1. A
large part of the whole toolbox consists of functions to work with such models and
to handle them in an efficient way. All visualization for these models is carried
out by an interface to SCIRun.

∗ An interface that gathers and provides all the information of the forward model that
is needed to invert the data, e.g., the lead-field matrix and the noise model.
∗ Functions to create several types of mesh-free source configurations, to generate the

corresponding measurement data, and to validate the performance of inverse methods
applied to this data by means of the methods introduced in Section 1.3.3.

? The prior class contains and provides all the information about the HBM.

? The estimator class defines a superclass for different inverse methods. These schemes have
been implemented so far:

∗ MNE, sLORETA and different WMNE schemes and methods for the choice of the
regularization parameter.
∗ All the methods introduced in Section 3.3 are implemented in a common interface

that initiates and manages the alternated weighted walks needed for the computation.

3For information on SPM8, see: http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
4For information on SCIRun, see: http://www.sci.utah.edu/software.html
5For information on SimBio, see: https://www.mrt.uni-jena.de/simbio/index.php/Main Page

http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
https://www.mrt.uni-jena.de/simbio/index.php/Main_Page


4 Simulation Studies

4.1 Motivation

The choice of the locations of the source nodes is a crucial point for CDRs, and will be discussed
in the following. Since the neural generators of the EEG/MEG signal are located in parts of
the gray matter (cf. Section 1.1) a fine volumetric discretization of this thin, layered compart-
ment would be preferable. However, this approach is constrained by the available structural
information: The cortex involves deep but thin sulci and is strongly folded. To attain a detailed
volumetric representation of it, structural imaging scans (CT or MRI) with a high imaging res-
olution and sophisticated segmentation algorithms are needed. Instead, many approaches try to
segment the cortical surface only. Furthermore smoothing is used frequently, which results in
a flattened surface representation. In addition, deep-lying gray matter areas, or areas encased
by white matter, e.g., the insular, the cingulate cortex, the hippocampus (see below) or the
thalamus are often not represented. Working with such surface representations is reasonable
and advantageous for a wide range of experimental designs, e.g., when the activity is known
to occur only in superficial cortical areas and the location of these areas is important, whereas
depth information is not of interest. The concrete source locations ri are then restricted to
the segmented surface and the normal constraint is used (i.e., d = 1, cf. Section 1.3). In the
absence of structural information, a spherical or ellipsoidal surface is used (the parameters for
these surfaces can, e.g., be obtained by maximizing the free energy of the model, see Sato et al.,
2004 for details).
Nevertheless, often the active brain networks involve deep-lying components of the cortex as well.
One example are networks involving the hippocampus, an archicortex component of the limbic
system (see Figure 4.1). It plays an important role in episodic or autobiographical memory,
spatial memory and navigation (Duvernoy, 2005; Andersen, 2007). Concerning its pathology,
the hippocampus is often the focus of epileptic seizures: Hippocampal sclerosis is the most com-
monly visible type of tissue damage in temporal lobe epilepsy (Chang and Lowenstein, 2003;
Stefan et al., 2009). Other pathologic implications include, e.g., Alzheimer’s disease (Duvernoy,
2005; Andersen, 2007). As a result a number of networks which are interesting from clinical or
scientific point of view include the hippocampus as an active component1. For these networks,
a complete representation of the cortex is mandatory.

1At the moment, EEG is actually the main diagnostic toll for presurgical epilepsy diagnosis

Figure 4.1: The hippocampus compartment (red)
Source: Wikimedia Commons, file: Hippocampus image.png
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When the complete gray matter of a high resolution MRI scan is segmented and its volume
is discretized, many more deep-lying locations form the source space and a phenomena called
“depth bias” gains fundamental importance for the correct localization of source activity: Many
inverse methods fail to reconstruct deep-lying sources in the right depth, reconstructing them
too close to the skull (cf. Figures A.18, A.19 and A.20). This is a well known systematic error
(e.g., Ahlfors et al., 1992; Wang et al., 1992; Gencer and Williamson, 1998) and was subject to
many studies (e.g., Ioannides et al., 1990; Pascual-Marqui, 1999b; Fuchs et al., 1999; Pascual-
Marqui, 2002; Greenblatt et al., 2005; Sekihara et al., 2005; Lin et al., 2006; Grave de Peralta
et al., 2009). The depth bias can be a crucial error, e.g., in the presurgical diagnosis for epilepsy
patients, where the task is to determine the right location of the resection volume. Still, a deep
mathematical analysis has not been undertaken, yet (to the best of my knowledge). There are
inverse methods that do not show this error, but they suffer from other drawbacks instead (e.g.,
sLORETA, see Section 1.3.2). Again, it is not well understood yet, why those methods do not
show a depth bias.
Another effect related to the depth bias is the masking of deep-lying sources by superficial ones:
If the real source configuration consists of multiple, spatially separated sources with different
depths, many inverse methods only recover the sources close to the skull. This effect can lead to
crucial errors in the presurgical diagnosis for epilepsy patients suffering from multi focal epilepti-
form discharges: This form of epilepsy is correlated to a worse postoperative outcome regarding
seizure freedom and complicates the presurgical diagnosis (Chang and Lowenstein, 2003). The
correct detection and separation of multiple sources is hence of greatest importance to guide the
presurgical diagnosis and operation planning.

For the reasons presented above, we want to examine if the Full-MAP and Full-CM approxima-
tion methods which were proposed in Section 3.3 and then computed for a specific HBM can
improve upon commonly used inverse methods applied to the following scenarios:

? Study 1: Localization properties and depth bias for single focal sources.

? Study 2: Recovery and separation of multiple focal sources. Masking of deep-lying sources
by superficial ones.

To ease the interpretation of the results of the main studies, a number of preliminary exam-
inations are carried out in advance. Furthermore, we are interested in comparing different
performance measures for our purpose, with a focus on the usage of Wasserstein distances for
multiple-source scenarios (see Section 1.3.3 and 3.7). Although not apparent at this stage, the
main motivation to examine HBMs in this thesis was one result from Calvetti et al. (2009):
Within a simplified geometry, a single deep-lying source was reconstructed (cf. Figures 1-4 on
page 894 in Calvetti et al., 2009). The CM approximation with an inverse gamma hyperprior
yielded the best result, both in location and in extend of the estimated source. Moreover, it
seemed to have no depth bias whereas MAP approximation by the IAS algorithm for the same
HBM seemed to suffer from it. Within the publication the topic was not examined any further,
and especially, only a single source configuration within a realistic geometry was considered. In
this thesis these issues will be pursued with realistic head modeling and a large number of recon-
structions. In the following, we will introduce a HBM for the recovery of source configurations
consisting of a few and focal sources, and present the general setting in which our studies are
carried out.

4.2 Hierarchical Modeling of Sparse Source Configurations

The HBM we use to represent focal source activity has been introduced in Sato et al. (2004)
and has further been examined in Nummenmaa et al. (2007a,b); Calvetti et al. (2009). We will
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rely on the introduction given by Calvetti et al. (2009) to illustrate it: The aim is to formulate a
HBM for the instantaneous reconstruction of currents consisting of few and focal sources. This
a-priori information is of qualitative nature:

1. Nearby source elements should a-priori not be mutually dependent, to favor focality.

2. No location preference for activity should be given a-priori.

3. Most of the dipole-like sources should be silent, while few could have a large amplitude.

To construct a HBM out of this information, a covariance set

C =
{
eie

t
i ⊗ Idd, i = 1, · · · , k

}
is chosen and conditions 1.-3. are transcribed into the construction of the hyperprior:

1.−→ The hyperparameters γi should be stochastically independent. This is assumed by default
in our framework.

2.−→ The variances γi should be equally distributed.

3.−→ A possible choice to realize this is given by the generalized gamma distribution, a distri-
bution often used to model random variables describing scale variables as the γi in our
model. Its shape is determined by three parameters that can change the distribution from
promoting a certain scale to being (nearly) scale invariant. The latter choice allows some
γi to have a large amplitude (and thus the associated dipole-like source is allowed to show
significant activity), while all others have a very small amplitude.

The choice of the generalized gamma distribution as a hyperprior leads to:

phyper(γ) ∝
h(=k)∏
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i exp
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(4.1)

The parameters α > 0 and β > 0 determine shape and scale of the distribution, whereas ζ
distinguishes between different classes of two-parameter scale distributions, e.g., ζ = −1 yields
the inverse gamma distribution, ζ = 1, yields the (standard) gamma distribution. Although
the methods should work for a broader range of ζ, we will restrict ourselves to these two cases
for MAP estimation and to the inverse gamma case for the CM estimation. In Section A.1.7
the main properties of both distributions are discussed. The full posterior is now given by (cf.
(2.11), %i = 3, h = k):
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(4.2)

As discussed in the beginning of Chapter 3, for this choice of covariance set, real source vectors
si∗ and pseudo sources s̃i coincide and accordingly (4.2) already factorizes over γi.

For this concrete HBM we are now able to complete the computation of the Oγ and Sγ step
based on Section 3.4.2. The hyperparameter dependent single component part of the posterior
now reads (cf. (3.11)):
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2
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))
(4.3)
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For the gamma hyperprior (i.e., “+“ in the above formula), the conditional update γCMAP,i is
given by:

γCMAP,i = argmax
γi

{
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(
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(4.4)
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(4.5)

Computing the first and second order conditions yields

First order: 0 = γ2
i − ηβγi −

‖si∗‖2

2
β where η :=(α− 5/2)

Second order: 0 6
‖si∗‖2

γ3
i

+
(α− 3/2)

γ2
i

.

The second order condition is fulfilled if α > 1.5. The first order condition yields two solutions,
of which only the positive root fulfills the positivity constraint γ > 0, and only if α > 2.5. In
this case, the solution is given by:

γCMAP,i =
β

2

η +

√
η2 +

2‖si∗‖2

β

 (4.6)

For the inverse gamma hyperprior (i.e., “−“ in (4.3)), a similar computation shows that all α > 0
fulfill the second order condition and that the update rule is given by:

γCMAP,i =
1
2‖si∗‖

2 + β

κ
, with κ = α+ 3/2 (4.7)

In principle, Os and Oγ steps within the AO scheme can now be combined explicitly, resulting in
a fixed point iteration for s. This sheds some light on the motivation for introducing the cyclic
AO scheme in combination with this special HBM: It turns out that through varying α, β and
ζ, a variety of well known optimization schemes for regularization based approaches to CDR
can be assessed naturally, i.e., by applying a simple procedure for MAP approximation for one
common generative model. This is discussed in the appendix in Section A.1.8.
Concerning the Sγ step for the inverse gamma hyperprior, the conditional distribution ppost(γi, s|b)
given by (4.3) can be rearranged to:

ppost(γi, s|b) ∝ exp

(
−

1
2‖si∗‖

2 + β

γi
+ (−(α+ 3/2)− 1) ln(γi)

)
(4.8)

This is also an inverse gamma distribution, with parameters β̄ = 1
2‖si∗‖

2 + β and ᾱ = (α+ 3/2)
(cf. (4.1)). This invariance property is called conditional conjugacy and simplifies the sampling
scheme considerably. In principle, even the implicit prior on S, i.e., p(s) (which is given by 2.5)
can be computed explicitly. This is also done in the appendix, see Section A.1.9.

Remarks: (from Nummenmaa et al., 2007a)

? Note that the currents are only assumed to be independent a-priori, and not a-posteriori.

? Even though the assumptions of a-priori independent (implying also uncorrelated) sources,
stationary noise distribution, and a data driven characterization of the source covariance
resemble seemingly those of local, spatial scanning methods and beamforming, this hierar-
chical approach is a global, source space based method (cf. Section 1.3.1). That means all
currents (and other parameters) are estimated simultaneously, rather than using a spatial
filter methodology and projecting the data to each source point separately.
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(a) Skin (b) Skull compacta (c) Skull spongiosa

Figure 4.2: Surfaces used for head model generation.

4.3 General Setting for the Studies

4.3.1 Head model

The head model we will use for our studies was created in the following way: T1 and T2 weighted
MR images of a healthy proband were taken, and the T2 image was registered onto the T1 image
(see Figure A.7 in the appendix). Different tissues were segmented and high resolution surface
meshes were created from the voxel-based segmentation volumes. The surfaces were smoothed
using Taubin smoothing (Taubin, 1995) to remove the blocky structure which results from the
fine sampling of the voxels. For the aims of our specific studies only the surfaces of skin, eyes,
skull compacta and skull spongiosa (see Figure 4.2) were used to create a high quality 3D De-
launay triangulation via TetGen2. Within both skull compartments, a higher mesh resolution
is used. In total, the model consists of 512 394 FEM nodes and 3 176 162 tetrahedra (see Figure
4.3). The electrical conductivities of the different tissues are listed in Table 4.1.
The reason for using this model instead of a model including the inner brain compartments like
gray matter and white matter is that we want to focus on the effect of depth bias separate from
others, e.g., from the effects caused by the anisotropy of the white matter (which also makes the
results comparable to those obtained using BEM models, which cannot capture the anisotropy).
In addition, to facilitate the interpretation of the results, we need a homogeneous innermost
compartment without holes and enclosures where we can place the test sources. Another im-
portant aspect for practical EEG/MEG studies is the effect of insufficient sensor coverage: For
an optimal scan of the electromagnetic field pattern, the sensors should be placed uniformly
distributed in every spatial direction. However, for practical reasons, this is not possible in re-
alistic settings: The neck causes a semi shell like sensor distribution which is not able to record
fields in the direction of the feet. Especially deep lying sources suffer from this insufficiency.
The influence of insufficient sensor coverage should not be mixed with the effects of depth bias.
Therefore we will use an artificial sensor configuration consisting of 134 EEG sensors distributed
uniformly over the surface of the head model (see Figure A.8 on page XVI in the appendix).
Within the inner compartment, a source space consisting of 1 000 FEM nodes based on a reg-
ular grid is chosen, the grid size is 10.986 mm (for details and illustration, see Figures A.11
on page XVIII in the appendix). At each node, d = 3 orthogonal dipoles are placed, and the

2TetGen: A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator. http://tetgen.berlios.de/

http://tetgen.berlios.de/
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Figure 4.3: 5-compartment realistic head model used for the forward computation.

corresponding lead-field matrix is computed with SimBio3 (with linear basis functions and the
Venant approach for dipole modeling). In Figure A.9 in the appendix on page XVII, the sum
of the `2-norms of the three gain-vectors is depicted. The complete model generation pipeline is
depicted in Figure 4.4.

4.3.2 Inverse Methods

We will use the following methods for our studies:

? CM approximation via the AS CM algorithm as described in Section 3.3 for the HBM
introduced in Section 4.2 with hyperpriors of the inverse gamma type. Parameters: α, β,
Q, R.

? MAP approximation via the uAO MAP algorithm as described in Section 3.3 for the
HBM introduced in Section 4.2 with hyperpriors of the gamma and inverse gamma type.
Parameters: α, β, T . The convergence criterion for the CGLS iterations used in the Os
steps will be that the relative residual of the normal equations falls below 10−6 (cf. Section
3.5).

? MAP approximation via the cmAO MAP algorithm as described in Section 3.3 for the
HBM introduced in Section 4.2 with hyperpriors of the inverse gamma type. Parameters:

3For information on SimBio, see: https://www.mrt.uni-jena.de/simbio/index.php/Main Page

https://www.mrt.uni-jena.de/simbio/index.php/Main_Page
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Table 4.1: Isotropic tissue conductivities used for the different compartments.

Head tissue Conductivity (S/m)

Skin 0.43
Eyes 0.505
Skull compacta 0.0064
Skull spongiosa 0.02865
Brain 0.33

registration

segmentation extract, 
repair &
smooth 
surfaces

volume meshingsource 
space 

construction

forward
computation

T1

T2

Figure 4.4: Model generation pipeline.

α, β, Q, R, T . The convergence criterion for the CGLS iterations used in the Os and Ss
steps will be that the relative residual of the normal equations falls below 10−6.

? MAP approximation via the McmAO MAP algorithm as described in Section 3.3 for the
HBM introduced in Section 4.2 with hyperpriors of the inverse gamma type. Parameters:
α, β, U , Q, R, T . The convergence criterion for the CGLS iterations used in the Os and
Ss steps will be that the relative residual of the normal equations falls below 10−6.

? MNE as described in Section 1.3.2. Parameter: Regularization parameter λ.

? WMNE as described in Section 1.3.2 with `2 weighting (Fuchs et al., 1999) and regularized
`∞ weighting (Fuchs et al., 1999):

Σ`2
s = diag

i=1,...,n

(
(‖L(·,i)‖22)−1

)
;

Σ`∞,reg
s = diag

i=1,...,n

(
χ2
i

(χ2
i + β2)2

)
, with χi = ‖L(·,i)‖∞; β = max(χ) · m σ2

‖b‖22

Parameter: Regularization parameter λ.

? sLORETA as described in Section 1.3.2. Parameter: Regularization parameter λ.

To get an initial visual impression of the different methods, their results for a single dipole source
are depicted in Figures A.12 - A.20. The parameter setting used for these reconstructions is
the result of the following sections where we will discuss the choice of the parameters, and the
effects of adding measurement noise.



46 4.4. PRELIMINARY EXAMINATIONS

Table 4.2: Computation time (sec) for one AS CM or uAO MAP computation for different assumed
noise levels x.

100% 10% 1% 0.1% 0.01% 0.001%

AS CM 95.41 217.23 397.73 841.92 1182.68 1604.16
uAO MAP 0.13 0.26 0.60 1.26 1.07 1.28

Table 4.3: Influence of real and assumed noise level (nl) on MNE: For different real underlying noise
level, different noise level for the choice of λ based on the discrepancy principle are assumed
(but never less than the real noise level). The resulting mean DLE for 10 000 randomly
placed dipoles is depicted (in mm).

assumed noise levels →
real noise level ↓ 0% 2.5% 5% 7.5% 10%

0.0% 24.64 28.91 30.32 31.80 33.95
2.5% 28.57 30.10 31.62 33.76
5.0% 29.57 31.11 33.20
7.5% 30.50 32.22

10.0% 31.38

4.4 Preliminary Examinations

4.4.1 The Influence of Noise and the Noiseless Case

So far, our setting aims at separating the effects of depth bias from all other potentially arising
effects that influence the estimation process. Thus we could try to avoid the effects of adding
measurement noise as well, and add no noise to the simulated data, i.e., the noiseless case. On
the other hand, this poses some methodical problems that we will discuss in this section.
First of all, a definition of noise level used in the following is fixed, as there is no commonly
accepted one in the literature: In line with Calvetti et al. (2009) we will speak of a (relative)
noise level of x if the standard deviation of the measurement noise (i.e., σ in our notation) fulfills
σ = x · ‖b0‖∞, where b0 are the measurements in the noiseless case.
For HBMs, the noise variance σ2 needs to be specified in some way (cf. (4.2)), even in the
absence of real noise. Otherwise the likelihood will become singular, and the numerical imple-
mentation breaks down. One could hence choose a very small value of σ2, but that increases the
computation time dramatically, as depicted in Table 4.2. In addition, assuming noise enters a
regularization term into the scheme (via the likelihood) that is needed due to the ill-condition
of the problem, regardless whether the data really contains noise or not. These are the reasons,
why Calvetti et al. (2009) do not actually add noise, but assume that σ is 5% of the maximum
of the noiseless signal. Still, for our purpose and the error measures we use, this approach may
discriminate the other inverse methods4: In Table 4.3 the mean DLE for the MNE of 10 000
randomly placed dipoles is depicted for different combinations of assumed and actually added
noise. The regularization parameter is chosen according to the discrepancy principle (see Section
4.4.3) based on the assumed noise level. For a fixed assumed noise level, the DLE slightly de-
creases with increasing real noise level, which is a quite counterintuitive result. This phenomena
was even more pronounced for a different head model which was used at the beginning of our
studies (but was then replaced by the new head model described in Section 4.3.1). It occurs for
all `2-norm based linear estimators, and for the uAO MAP approximations. Its origin is related
to realistic head modeling: In summary, realistic head modeling results in source locations with
gain vectors that are “more unique” compared to the other vectors than it is the case in sim-

4Calvetti et al. (2009) do not consider other inverse methods in their studies
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plified (more symmetric and homogeneous) volume conductors. Certain inverse methods prefer
to place the maximal amplitude of their estimates on these locations. As they are often found
in boundary areas of the source space, this tendency leads to large DLEs. Adding noise “cures”
this problem to a certain extend. This issue will not be pursued any further within this thesis.
Facing these problems, we will not consider the noiseless case in our studies at all, but always
add noise to our data (at noise levels of 5% or 10%). Although it would be preferable to sepa-
rate the effects of noise from those of depth bias, our considerations show that it might produce
unwanted phenomena when using other inverse methods than HBM based types. This will com-
plicate the comparison between the different methods, which is one of the central aims of our
studies and is far more important than getting rid of the effects of sensor noise. The noiseless
case is of theoretical interest, but omitting it does not weaken the value of the studies with
regard to realistic applications, where noise is not avoidable (EEG/MEG recordings often suffer
from rather low SNRs).

4.4.2 The Choice of the Parameters of the HBM Based Methods

In this section, we will discuss the general behavior of our CM and MAP approximation schemes
for different settings of the parameters of the hyperprior, α and β (cf. (4.1)) and fix the internal
parameters of the methods that have not been set yet. Note that from the Bayesian modeling
paradigms, the choice of the hyperprior parameters should, in principle, not depend on the
method we use for inversion (cf. Section 2.1), but only rely on our a-priori information about
the value of the hyperparameters. Remember that they define the distributions of the γi which
on their part determine the typical scale and spread of the source amplitudes. As the source
amplitudes represent the macroscopic net current flow in the vicinity of the source location (cf.
Section 1.2) the choice of α and β should ideally include our physiological a-priori knowledge
about typical source current amplitudes found in the gray matter volume. Furthermore, it is in
particular improper to use, e.g., different parameters for MAP and CM estimation. Nevertheless,
since we do not have sufficient a-priori knowledge, and our main interest lies in the practical
value of these new methods, we will commit this abuse (Sato et al., 2004; Nummenmaa et al.,
2007a,b; Calvetti et al., 2009 all choose them ad hoc, as well).

Inverse Gamma Hyperprior: We will start with the inverse gamma hyperprior, which can be
seen as a canonical choice for a hyperprior, and was thus used in many more studies until now5.
As examined in Nummenmaa et al. (2007a,b), the choice of parameters is not a trivial issue,
since the full posterior distribution is multimodal, i.e., it has multiple local maxima (modes). In
the following we will illustrate this phenomena indirectly and sketch the consequences for our
approximation methods. It is beyond the scope of this thesis to examine it deeply, especially
since we would need to introduce a lot of technical terms and tools.
The multimodality is a result of the non-convexity of the energy of the inverse gamma hyperprior,
i.e., the negative natural logarithm of its density function (fi(·) in our notation, cf. (2.7)). This is
discussed in Section A.1.7 in the appendix. The multimodality is always present to some extend,
however, the concrete choice of the parameters and the interplay with the under-determinedness
of the linear equation system determine whether it affects the estimation process practically. To
understand this, it is crucial to distinguish between the theoretical and practical consequences
of parameter changes for MAP and CM estimation and approximation when dealing with a
multimodal distribution.
First, we use a simple toy model to sketch the theoretical consequences for MAP and CM
estimation. Let p(x; θ) be a probability distribution on RN that depends continuously on a
parameter θ ∈ Θ ⊂ RK . Given that the posterior mean exists for all θ ∈ Θ, the CM estimate
x̂CM by its very nature is a continuous mapping from {p( · ; θ) | θ ∈ Θ} to RN , and therefore

5I am actually only aware of Calvetti et al. (2009) using the gamma hyperprior.
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ξ = −0.4
φ = 0.4

ξ = −0.4
φ = 0.6

ξ = 0.4
φ = 0.4 shift

ξ → − ξ
scale

φ → (1 − φ)

Figure 4.5: The impact of parameter changes for the toy model. From middle to left image: A change
of ξ causes the modes of p1 (red) and p2 (blue) to switch position but does not affect the
heights. The MAP estimate will hence follow this shift and changes continuously. From
middle to right image: A change of φ will change the relative heights of the modes without
changing their position. At φ = 0.5 the MAP estimate will discontinuously jump from the
blue to the red mode.

gives rise to a continuous mapping x̂CM(θ) from Θ to RN : x̂CM(θ) = x̂CM(p( · ; θ)). If p(x; θ) is
multimodal for some θ ∈ Θ this does not affect x̂CM(θ) theoretically. Practically, MCMC-based
CM approximation methods may fail to reach every mode within a reasonable sample size, i.e.,
the chain is practically reducible.
Now let x̂MAP(θ) be the mapping from Θ to RN given by x̂MAP(θ) = x̂MAP(p( · ; θ)). The mapping
x̂MAP(θ) is very sensitive to certain changes of the modes of p( · ; θ) due to the discontinuous
nature of the argmax function: A change in the location of the modes is not problematic, but
a change of the relative heights of different modes of the distribution may cause a sudden jump
of x̂MAP(θ). To illustrate this and to prepare our further examinations, we consider a simple toy
example of a bimodal distribution: For θ = (φ, ξ) ∈ [0, 1]× [−1, 1], let p(x;φ, ξ) be a mixture of
two Gaussians with equal variances ν2 = 0.05 but mirrored means:

p(x;φ, ξ) = (1− φ) · p1(x; ξ) + φ · p2(x; ξ)

with

p1(x; ξ) =
(
2πν2

)−1/2 exp
(
− 1

2ν2

(
x− ξ

2

)2
)

p2(x; ξ) =
(
2πν2

)−1/2 exp
(
− 1

2ν2

(
x+ ξ

2

)2
)

Now a change in ξ causes a shift of the modes, whereas a change in φ scales the relative heights
of the modes. In Figure 4.5 the different impact of these changes is illustrated. In Figure 4.6
the values of x̂MAP(θ) and x̂CM(θ) are plotted as a function of ξ and φ. The discontinuity of
the MAP estimate at φ = 0.5 is a clearly visible hint to the multimodality. We will exploit
this phenomenon to indirectly illustrate the multimodality of the posterior (4.2) when using an
inverse gamma hyperprior: The true number and location of the modes of ppost(s,γ|b) is hard
to detect, but as we have seen, varying the parameters of the hyperprior can change height and
location of the modes. A MAP approximation scheme may thus end up in different modes,
dependent on the parameter values (not only due to a change of the real MAP estimate, but
also due to a change of the mode that attracts a locally convergent MAP approximation scheme
like, e.g., AO MAP). For a continuous scalar property computed from a MAP approximation
and plotted for different parameter values as in Figure 4.6, edges mark parameter sets, across
which the MAP approximation jumps from one mode to another, and therefore indicate that the
distribution is in fact multimodal. Still, this will only give a vague impression of the complexity
of the posterior, as only those modes that are locally attractive to the approximation scheme
for some set of parameters will be revealed.
For a single dipole (see Figure A.10 in the appendix) the uAO MAP result has been computed
for different values of α and β, using T = 100. The measures spatial dispersion, relative residual



CHAPTER 4. SIMULATION STUDIES 49

φ

ξ

0 0.5 1

−1

0

1
φ

ξ

 

 

0 0.5 1

−1

0

1

−0.5 0 0.5

Figure 4.6: The impact of parameter changes for MAP estimate (left) and CM estimate (right).

‖b − LsuAO MAP‖/‖b‖, DLE, 8th-COME , 1st-COME and EMD were computed for the resulting
MAP approximation. Figure 4.7 shows the results. From the spatial dispersion result we can
see that for a fixed b, the HBM proposed here comprises focal MAP approximations as well as
spatially smoother ones sharply separated in the parameter space. This separating line marks
the region where the influence of the hyperprior in the posterior (4.2) (which prefers focal solu-
tions) overcomes the influence of the likelihood (which prefers smooth solutions). In the region
below the line, the non-convexity of the hyperpriors energy (cf. Section A.1.8) causing the mul-
timodality becomes visible: The continuous measures relative residual, COME and EMD show a
clear fragmentation into different areas representing single modes of the posterior. Within these
areas, the measures look quite smooth again. Facing this complex variety of the characteristic
features of the MAP approximation by the uAO MAP algorithm for different parameter choices
even for one single dipole source, the task of finding an optimal parameter set for a whole study
with different single dipole sources and for subsequent studies with more complex source pattern
seems rather hopeless, or in gentle words, is beyond the scope of this thesis. For our purpose,
the expectation of the outcome of such an examination is very limited: The CM approximation
via AS CM with a parameter set found by visual inspection outperforms every score achieved by
a uAO MAP approximation encountered within the search over all 156 791 parameter sets that
were sampled to attain the above results6. The MAP approximations that are based on CM
approximation, i.e., cmAO MAP and McmAO MAP, even improve up on the results achieved
by AS CM. Calvetti et al. (2009) use α = 1.55 and β = 10−7 for both gamma and inverse gamma
hyperprior without further justification. However, we cannot simply take over the value of α as
we use a slightly different parameterization. Unfortunately, no other publication we are aware
of examines Full-MAP estimation for this HBM in EEG/MEG.
To proceed nevertheless, we fix T to 50 iterations and the values of α and β will be fixed by
averaging the EMD for 1 000 single unit-strength dipole sources for a set of possible parameters.
The range of the parameters within this set has been chosen on the basis of preliminary studies
with smaller sample sizes on a wider range of parameters. The choice of the EMD over the more
common DLE will be justified in Section 4.7. In summary, the EMD is the best single measure
that captures both our modeling assumptions of focal source activity and right localization. In
Table 4.4 the results are depicted. From this we choose α = 0.5 and β = 5 · 10−6. We did not
test smaller values of α, since other findings suggest that the uAO MAP scheme gets unstable

6CM result to best uAO MAP result: 4.45 to 23.74 in DLE; 5.27 to 31.70 in EMD; 0.0048 to 0.0086 in relative
residuum; 3.11 to 4.24 in 1st-COME.
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Figure 4.7: Features of the uAO MAP result with an inverse gamma hyperprior for a single dipole
source using different hyperprior parameter sets (α, β). Upper row from left to right: SD,
EMD, relative Residuum. Bottom row from left to right: DLE, 8st-COME, 1th-COME.

Table 4.4: EMD of IAS result for different parameters of the inverse gamma hyperprior, averaged over
1 000 single unit-strength dipole sources.

α →
β ↓ 0.5 0.6 0.7 0.8 0.9 1.0 1.2 1,5 2.0

10−4 38.08 38.31 38.48 38.58 38.73 38.81 39.19 39.80 40.75
5 · 10−5 34.17 34.31 34.46 34.69 34.92 35.03 35.28 35.78 36.75

10−5 28.82 28.94 29.04 29.17 29.22 29.35 29.66 30.08 31.21
5 · 10−6 28.18 28.28 28.36 28.49 28.66 28.88 29.29 29.98 31.67

10−6 32.90 33.50 33.90 34.44 35.03 35.70 37.34 39.36 41.54

in these regions. This might not be visible in the averaged values and might therefore be over-
looked. Furthermore, we will use the same value for α for all other methods based on the HBM
with an inverse gamma hyperprior which will ease the comparison.
As discussed above, concerning CM approximation, the multimodality of the posterior should

only affect the practical performance of the approximation. It would thus be interesting to re-
peat the above examinations and see how Figure 4.7 looks like for AS CM and based on this, for
cmAO MAP and McmAO MAP. Unfortunately, the computation time for AS CM is not only
way larger than for uAO MAP by default, it even increases considerably for larger values of β.
The parameters which we will use later (i.e., α = 0.5, β = 5 · 10−8) yield the best results while
exhibiting moderate computation times. Still we decided to omit the comparison in this thesis.
The concrete parameters used for AS CM for our studies are chosen in the following order: First,
the burn-in size is fixed to Q = 1 000 for all of our studies. This is certainly sufficient, since the
chain is reported to have a rapid mixing (Nummenmaa et al., 2007a). Furthermore, Calvetti
et al. (2009); Nummenmaa et al. (2007a) do not report to use burn-in steps at all. Second,
the real sampling steps R used will be 10 000 for preliminary studies, 1 000, 5 000 and 50 000
for the first study, and 5 000, 50 000 and 200 000 for the second. In addition, we will use the
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Table 4.5: EMD of the AS CM result for different parameters of the inverse gamma hyperprior, averaged
over 100 single unit-strength dipole sources.

α →
β ↓ 0.50 0.90 1.25 2.00

10−6 23.39 9.10 14.62 24.22
5 · 10−7 15.24 10.50 16.52 26.72

10−7 7.97 14.46 22.59 30.88
5 · 10−8 7.68 16.17 24.75 32.70

10−8 8.27 21.70 29.90 38.62

blocked inversion scheme for all studies, which means that we solve the WLS-problem in the
Ss step with the CGLS algorithm (cf. Section 3.4.1). The values of α and β will be chosen
similar as for the uAO MAP method, except that only 100 single unit-strength dipole sources
are used for testing. In Table 4.5 the results are depicted. From this, we choose α = 0.5 and
β = 5 · 10−8 for our further studies. The values of α and β for cmAO MAP and McmAO MAP
are set to those used for AS CM. This choice is not only to reduce the computational burden,
but also relies on the observation that both methods mainly refine the result given by AS CM.
For both methods T is set to 50. For cmAO MAP, Q and R are also set to the same values as
for AS CM. For McmAO MAP the choice of U , Q and R is more complicated: The intention of
the McmAO MAP method is to have a number of different starting points for the cmAO MAP
scheme in such a way that different modes are found and can be compared. If R is chosen very
large, the convergence of the AS CM scheme will cause the starting points to be almost equal,
and hence, the subsequent AO MAP scheme should end up in the same mode for all seeds. On
the other hand, if R is too small, the initial γ0’s will be too “non-sparse“ and the modes found
by the AO MAP scheme starting at these seeds will be quite similar to the one found by the
uAO MAP method. For U the situation is more simple: The performance can only increase by
an increase of U . However, that will of course increase the computational burden. For these
reasons, a preliminary study is carried out: 100 single unit-strength source dipoles are recon-
structed using different combinations of U , Q and R. For each dipole, a ranking of the methods
is computed by comparing the (rounded) probabilities of the MAP approximations found by the
different methods. The method that found the approximation with the highest probability is
ranked at the first place. Methods that found an approximation with the same probability are
ranked at the same place. Subsequently the mean rank of each method is computed over all 100
dipoles. The results are listed in Table 4.6. From this we choose U = 64, Q = 25 and R = 200.

Gamma Hyperprior: For the gamma hyperprior, the situation for MAP estimation and approx-
imation is way less complicated, since the energy of the hyperprior is always convex (cf. Section
A.1.7), and so is the complete objective function (4.2). Thus we have a unique minimizer and
the uAO MAP algorithm should converge globally to the MAP estimate. It is shown in the ap-
pendix in Section A.1.8 that the uAO MAP algorithm in fact turns out to work like a fixed point
scheme to minimize a functional involving a relaxed `1-norm penalty on the source amplitudes.
Just for comparison and illustration, the same examinations as in the last paragraph are carried
out for the gamma hyperprior, and the results are shown in Figure 4.8. The comparison of the
plots for the relative residual shows in particular the difference of a convex objective function
to a non-convex one. The values of α and β are also chosen by a preliminary study, Table 4.7
shows the corresponding results. The results indicate to use α = 2.6 and β = 10−5.
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Table 4.6: Mean ranking of different McmAO MAP methods.

M = 5 R = 10 R = 25 R = 50 R = 100 R = 200

U = 4, Q = 5 16.41 16.04 14.88 13.44 11.46 8.16
U = 4, Q = 10 16.00 15.54 11.97 9.95 7.79
U = 4, Q = 25 13.39 12.06 9.80 7.70
U = 4, Q = 50 10.95 9.56 7.73
U = 16, Q = 5 9.25 9.31 6.88 5.22 4.43 2.59
U = 16, Q = 10 8.50 6.57 4.91 3.91 2.77
U = 16, Q = 25 5.43 4.47 3.65 2.14
U = 16, Q = 50 3.96 3.12 2.40
U = 32, Q = 5 5.91 5.47 3.88 2.79 2.55 1.39
U = 32, Q = 10 5.11 4.19 2.93 2.28 1.45
U = 32, Q = 25 3.09 2.45 2.09 1.41
U = 32, Q = 50 2.12 1.67 1.49
U = 64, Q = 5 3.24 3.14 2.04 1.73 1.62 1.13
U = 64, Q = 10 3.16 2.13 1.71 1.39 1.17
U = 64, Q = 25 1.67 1.57 1.30 1.12
U = 64, Q = 50 1.38 1.21 1.19

Table 4.7: EMD of the uAO MAP result for different parameters of the gamma hyperprior, averaged
over 1 000 single unit-strength dipole sources.

α →
β ↓ 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3

10−4 39.56 35.35 41.00 45.25 48.31 50.53 52.14 53.33 54.27
5 · 10−5 38.24 33.04 37.50 41.39 44.43 46.79 48.61 50.02 51.10

10−5 36.24 30.95 32.68 35.47 38.20 40.64 42.71 44.44 45.88
5 · 10−6 35.80 31.14 31.69 33.81 36.32 38.79 41.01 42.94 44.56

10−6 36.03 33.53 32.67 33.02 34.48 36.58 38.92 41.20 43.25
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Figure 4.8: Features of the uAO MAP approximation with a gamma hyperprior for a single unit-
strength dipole source using different hyperprior parameter sets (α, β). From left to right:
Rel. res., SD, EMD, 1st-COME, 8th-COME, DLE



CHAPTER 4. SIMULATION STUDIES 53

Summary Parameters used in the following:

? Hyperprior parameter:

∗ uAO MAP method with gamma hyperprior: α = 2.6, β = 10−5

∗ uAO MAP method with inverse gamma hyperprior: α = 0.5, β = 5 · 10−6

∗ AS CM, cmAO MAP and McmAO MAP methods with inverse gamma hyperprior:
α = 0.5, β = 5 · 10−8

? Algorithm parameter:

∗ uAO MAP: Number of iterations T : 50.
∗ AS CM: Burn-in steps Q: 1 000. Sample sizes R: 1 000, 5 000 and 50 000 for the first

study, 5 000, 50 000 and 200 000 for the second.
∗ cmAO MAP: Burn-in steps Q: 1 000. Sample sizes R: 1 000, 5 000 and 50 000 for the

first study, 200 000 for the second. Number of iterations T : 50.
∗ McmAO MAP: U = 64, Q = 25 and R = 200. Number of iterations T : 50.

4.4.3 The Choice of the Regularization Parameter

For MNE, WMNE and sLORETA, rules to choose the regularization parameters have to be
determined. There are a variety of approaches, which can broadly be separated into approaches
where the noise level is known, or a good estimate of it is available, and approaches where it
is not known. In the toolbox, the discrepancy principle (e.g., Engl et al., 1996; Kaipio and
Somersalo, 2005) as a member of the first class and the cross-validation technique (e.g., Pascual-
Marqui, 1999a) as a member of the second class are implemented7. Since we assume to know
the noise level we will apply the discrepancy principle. In addition, it is a simple and robust
scheme allowing for an easy interpretation of the results without making further assumptions
on the problem.

4.5 Study 1: Localization of Single Dipoles

4.5.1 Setting

In the following, the depth of a location within our model is defined as the minimal distance to
one of the sensors. For the study, 750 single unit-strength source dipoles with random location
and orientation were placed in the inner compartment (not necessarily on the source space nodes
to avoid an obvious inverse crime, cf. Section 1.3.3). The following restriction on their depth
was posed: First, the nearest sensor is searched. For that sensor, the nearest source space node
is searched. The position for the dipole is only accepted if its depth is larger than the depth of
the source space node plus 10 mm. This way, dipoles that are closer to the sensors than any
source space node are avoided, which facilitates the interpretation of the results (for dipoles that
are closer to the surface than any source space node, no depth bias can occur).
Measurement data is generated using the same forward computation procedure used for the
lead-field generation, and noise at the noise levels of 5% and 10% is added.
The inverse methods listed in Section 4.3.2 are used to invert the data with the parameter setting
discussed in the proceeding sections.

4.5.2 Results

General properties The mean distance from the current dipoles to the next source space node
was 5.24 mm, which is the lower bound for DLE and EMD for all methods. Table 4.8 shows
EMD, DLE and SD, averaged over all dipoles. Interestingly, for the WMNE with regularized `∞

7L-curve approaches did not show convincing results.
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Table 4.8: Different validation measures averaged over 750 single unit-strength dipoles

Method EMD DLE SD
5% nl 10% nl 5% nl 10% nl 5% nl 10% nl

AS CM, R = 1 000 10.61 13.02 9.10 10.82 1.08e-03 1.34e-03
AS CM, R = 5 000 8.65 11.35 7.40 9.14 1.25e-03 2.03e-03
AS CM, R = 50 000 7.27 10.21 6.24 7.54 1.24e-03 2.67e-03
cmAO MAP, R = 1 000 9.43 10.29 8.52 10.06 3.00e-04 1.05e-04
cmAO MAP, R = 5 000 7.11 8.43 6.73 8.39 2.61e-04 4.35e-05
cmAO MAP, R = 50 000 6.06 7.27 5.82 7.28 2.31e-04 8.41e-06
McmAO MAP, U = 64 5.88 6.67 5.77 6.67 1.33e-05 8.62e-07
uAO MAP (inv. gamma) 28.26 53.72 27.10 37.65 1.36e-02 2.92e-01
uAO MAP (gamma) 31.07 35.74 27.19 32.65 8.73e-03 1.06e-02
MNE 53.22 55.93 29.55 30.63 2.36e-01 2.95e-01
WMNE `2 52.15 54.88 30.39 34.27 2.54e-01 3.12e-01
WMNE `∞,reg 49.53 52.41 29.37 25.04 2.17e-01 2.92e-01
sLORETA 40.55 44.92 6.02 7.33 1.86e-01 2.45e-01

Table 4.9: Mean ranking of different MAP approximation methods in the first study.

Method 5% nl 10% nl

cmAO MAP, R = 1 000 1.96 1.99
cmAO MAP, R = 5 000 1.79 1.68
cmAO MAP, R = 50 000 1.62 1.37
McmAO MAP, U = 64 1.02 1.01

weighting adding noise again leads to a counterintuitive decrease of the DLE (cf. Section 4.4.1).
This confirms that the effect of adding noise is a non trivial issue and should be examined in
more detail.

MAP approximations We briefly compare the different MAP approximation methods con-
cerning the posterior probability of their results. For this, only methods that rely on the same
parameter set can be compared. This limits the comparison to the cmAO MAP and the Mc-
mAO MAP methods which is still interesting, since both showed the best performance concern-
ing localization (cf. Table 4.8). In Table 4.9 the average rank within a ranking similar to the
one performed in Section 4.4.2 (cf. Table 4.6) is depicted.

Depth bias There is no concrete definition of depth bias yet that we could use for a direct
evaluation of the results. In general, in frequentist statistics, a statistical bias of an estimator
measures whether the estimator produces systematic errors. If an estimator aims to estimate
a scalar value, it could over- or underestimate it on average. The Bayesian analogue to this
property is called calibration (Gelman, 2006). However, there are technical problems which
complicate both the application of these concepts to our situation and the subsequent interpre-
tation of the results. For instance, the parameter space of the real sources and the estimated
sources are intentionally non-conforming in order to avoid an inverse crime. Therefore we will
rely on a visual presentation of the results in this thesis. Figure 4.9 gives an explanation of the
scatter plots we are using for that purpose: On the horizontal axis, the depth of the real source
is plotted. On the vertical axis, the depth of the source space node with the largest source esti-
mate amplitude is plotted. A mark within the area underneath the y = x line indicates that the
dipole has been reconstructed too close to the surface, whereas a mark above the line indicates
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the opposite. By qbl we denote the percentage of marks below the y = x line. If a method shows
a clear tendency to favor the lower area and qbl is considerably below 0.5, it suffers from depth
bias. A method performs well if its marks in this type of scatter plot are tightly distributed
around the y = x line as this does usually not only indicate a localization in the right depth but
also in total. Figures 4.10(a) - 4.11(c) show all data for every single method separately. Since
we found that the addition of noise to the data has no systematic impact on the phenomenon
of depth bias (although it affects the total performance, cf. Table 4.8) we omitted the plots for
the noisy case for all methods, and solely demonstrate it for the cmAO MAP method with R =
50 000 in Figure 4.11(d).
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Figure 4.9: Explanation of the scatter plots
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(a) AS CM, R = 50 000: qbl = 0.44.
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(b) cmAO MAP, R = 50 000: qbl = 0.49.
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(c) McmAO MAP, U = 64: qbl = 0.48.
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(d) uAO MAP (inv. gamma): qbl = 0.09.
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(e) uAO MAP (gamma): qbl = 0.13.
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(f) MNS: qbl = 0.05.

Figure 4.10: First Study: Scatter plots part 1
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(a) WMNE-`2: qbl = 0.09.
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(b) WMNE-`∞,reg: qbl = 0.56.
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(c) sLORETA: qbl = 0.45.
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Figure 4.11: First Study: Scatter plots part 2

4.5.3 Discussion

McmAO MAP: The McmAO MAP method showed the best results in EMD, DLE and SD
(cf. Table 4.8). Compared to the second best method, i.e., the cmAO MAP method with R
= 50 000, its computation is about three times faster. Compared to other MAP approximation
schemes, it attains the highest posterior probability (cf. Table 4.11), which suggests that it
should be seen as the best approximation to the real MAP estimate examined here. Further-
more, the method does not seem to suffer from depth bias (cf. Figures 4.10(c)).
AS CM and cmAO MAP: Both methods showed promising results for the specific source
scenario examined here. They clearly benefit from increasing R (cf. Table 4.8), which of course
also increases the computation time. Compared to each other, the cmAO MAP result outper-
forms the AS CM result for the same value of R. Since the additional computation time is
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negligible this result suggests to always perform a subsequent AO run after an initial AS CM
scheme. Compared to established methods like MNE and sLORETA both methods clearly show
better results concerning EMD and SD (cf. Table 4.8) and the visual impression is more con-
vincing as well (cf. Figures A.12, A.13, A.17 and A.20). This even holds for small sizes of R.
Concerning DLE, cmAO MAP outperforms sLORETA for R = 50 000, while for AS CM it is to
examine whether a further increase of R could accomplish this.
In addition they do not seem to suffer from depth bias (cf. Figures 4.10(a) -4.10(b)).
uAO MAP: The uAO MAP scheme with the inverse gamma hyperprior showed the worst
results concerning localization of all methods based on the inverse gamma hyperprior (cf. Table
4.8). As described above, AO schemes based on other initialization rules showed much better
results. Using the uAO MAP scheme could then only be justified by the faster computation
time. To see if this argument really holds, it would thus be interesting to examine how small the
values of R, Q for the cmAO MAP scheme or additionally U for the McmAO MAP scheme can
be chosen to improve upon the uAO MAP scheme in a significant way. The gamma hyperprior
combination with the uAO MAP scheme attains similar results (cf. Table 4.8). Both methods
seem to suffer from depth bias (cf. Figures 4.10(e) and 4.10(d)). However, for practical appli-
cations, both improve upon the MNE in for low noise level, especially with regard to the extent
of the estimated source. Since they can also be computed very fast, they are a good alternative
to the MNE if the a-priori information suggests a focal source configuration.
MNE and WMNE: The WMNE schemes used in this study are modifications of the original
MNE explicitly aiming to improve the depth localization. Figures 4.10(f) - 4.11(b) clearly show
that they succeed in this aspect. Concerning EMD, DLE and SD, the conclusion is less clear
(cf. Table 4.8). The visualizations in Figures A.18 - A.20 do not yield a clear impression on the
different characteristics of the estimates either. Hence more detailed examinations are needed.
sLORETA: The sLORETA estimate performs well concerning DLE and depth bias (cf. Ta-
ble 4.8 and Figure 4.11(c)). Yet, Figure A.17 suggests that the sLORETA result overestimates
the spatial extent of the source considerably. The average EMD and SP of sLORETA clearly
confirm this (cf. Table 4.8).

It is important to stress that the above results were only attained for the specific source scenario
examined in this study. Without further examinations, their significance might be very limited,
since the ability to localize single dipoles is a rather trivial and largely uninformative property,
as shown by Grave de Peralta et al. (2009). It has been overrated for long due to a fundamental
misconception. Nevertheless, reconstructing single dipoles it is a starting test for every inverse
method for CDR, and the results for the methods based on HBM clearly motivate to examine
their use in more complex scenarios as well.

4.6 Study 2: Masking of Deep-lying Sources

4.6.1 Setting

The single dipoles that we used in the first study (see Section 4.5 for the constraint imposed on
their locations) are now combined to form source configurations consisting of a deep-lying and
a near-surface dipole: The dipoles are evenly divided into three parts by their depth (i.e., the
minimal distance to one of the sensors). For each of the 250 source configurations used in the
study, one dipole from the part with the largest, and one from the part with the smallest depth
are randomly picked. Noise at a noise level of 5% is added to the measurements. The inverse
methods listed in Section 4.3.2 are used to invert the data with the parameter setting discussed
in the proceeding sections. In comparison to the first study, a larger number of samples R is
used for AS CM and cmAO MAP (5 000, 50 000 and 200 000).
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4.6.2 Results

Initial example The results for a source configuration for which the masking effect is very
pronounced are shown (It was chosen by visual inspection after viewing the results for the
first five source configurations of the study.). Figure A.21(a) shows the source configuration.
In the left image, the left one of the sources is the near-surface one, located very close to
the eye-nerve hole in the skull. The other source is located deep in the brain, distant to all
sensors. Figures A.21(b) and A.21(c) show the MNE and sLORETA results. Even a careful
successive thresholding of the estimated source amplitudes does not reveal any evidence for the
presence of a second source. In practice, these results would probably not provoke a user to try
out other inverse methods in addition. Hence the deep-lying source is most likely overlooked.
Figures A.21(d) - A.21(f) show the AS CM, cmAO MAP and McmAO MAP results. Here the
cmAO MAP result clearly improves upon the AS CM result. The AS CM result seems only
capable of marking an ambiguous region around and in-between the support of the true sources.
The cmAO MAP scheme subsequently uses this ”region of interest“ to draw a clearer picture of
the source activity8.

General properties The right validation of inverse methods for multiple source scenarios and a
large number of different source configurations pose some problems. To generalize the commonly
used DLE, an algorithm to reliably detect local maxima of the estimated source amplitude would
be needed. Within the work for this thesis no such scheme was found. One problem arises from
the outermost nodes. The source grid is constructed by choosing all nodes of a regular grid
within a convex surface. Still, there are always points outside the convex hull of the source
space nodes for which the two nearest source space nodes are not connected within the normal
26-neighborhood (cf. Figure A.11). Now assume that the estimated source amplitude originates,
e.g., from the discretization of a Gaussian function centered on one of these outer points. This
estimate will hence have two local amplitude maxima on the discrete graph formed by the
source space nodes with a 26-neighborhood. For inverse methods suffering from depth bias often
estimates are encountered that look like they originated from the discretization of a continuous
distribution of which the local maxima lie on the boundary of the source compartment (cf.
Figures A.18 and A.21(b)). As explained above, normal graph-based approaches for detecting
local maxima will fail in such situations. Another problem is the right choice of thresholds.
In particular the AS CM scheme with a small number of steps R produces very non-smooth
estimates, with many small source amplitudes as a result of the finite averaging. From the
literature we are aware of, the only study that examines multiple source scenarios systematically
is Phillips et al. (2002b) who also use the two source scenario. However, their approach was
based on clustering the thresholded amplitudes. This should lead to the problems with the outer
nodes again, and in addition the extension of their approach to more than two sources did not
seem to lead to a feasible measure.
For these reasons, only EMD and SD are considered here. Table 4.10 shows both measures,
averaged over all source configurations.

MAP approximations The different MAP approximations are compared in a similar way to
the first study. Table 4.11 lists the results.

4.6.3 Discussion

The initial example showed that the source scenario examined in this study is a very challenging
one for inverse methods. The methods that performed best in the first study, i.e., the Mc-

8The AS CM result actually looks as if the MCMC method has not converged yet. To clarify this, R = 20 000 000
was used as well. The results look very similar, and are therefore not depicted. It is still possible that the
markov chain is not ergodic for practical reasons.
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Table 4.10: EMD and SD for the masking study, averaged over 250 source configurations.

Method EMD SD

AS CM, R = 5 000 15.96 2.54e-03
AS CM, R = 50 000 14.82 3.17e-03
AS CM, R = 200 000 14.70 3.32e-03
cmAO MAP, R = 5 000 13.69 8.72e-04
cmAO MAP, R = 50 000 12.54 8.42e-04
cmAO MAP, R = 200 000 12.15 8.22e-04
McmAO MAP, U = 64 13.62 7.55e-04
uAO MAP (inv. gamma) 42.93 1.5e-03
uAO MAP (gamma) 36.51 7.03e-03
MNE 44.54 2.19e-01
WMNE `2 43.76 2.54e-01
WMNE `∞,reg 41.77 2.37e-01
sLORETA 36.34 1.94e-01

Table 4.11: Mean ranking of different MAP approximation methods in the second study.

Method 5% nl

cmAO MAP, R = 5 000 2.37
cmAO MAP, R = 50 000 1.80
cmAO MAP, R = 200 000 1.72
McmAO MAP, U = 64 1.62

mAO MAP and the cmAO MAP scheme, also performed best in this study (cf. Table 4.10 and
Figures A.21(e) and A.21(f)). Compared to each other the McmAO MAP scheme still outper-
forms the cmAO MAP scheme with regard to the posterior probability (cf. Table 4.11), but
no longer concerning the EMD. This needs to be examined in more detail. In particular the
tuning of U , Q and R for the McmAO MAP scheme needs to be repeated for this scenario and
extended for larger values of U . Similar to the first study, Table 4.10 shows that both AS CM
and cmAO MAP benefit from a larger value for R and that the cmAO MAP result improves
upon the corresponding AS CM result.
The results also suggest that the posterior distribution for these scenarios is more complex than
for single sources. More comprehensive studies on this topic are therefore needed.

4.7 The Value of Wasserstein Metrics as Performance Measures

We briefly discuss some features of the use of Wasserstein metrics as a for the reconstruction
performance of inverse methods. Remember that we introduced the earth mover’s distance
(EMD) as a particular example of a Wasserstein metric in order to have a measure that is both
sensitive to localization and spatial extent of estimate (cf. Section 1.3.3).
In Figure 4.7 comparing the images for SD, EMD, 8th-COME and 1st-COME suggests that the
EMD shares features of the localization measures (8th-COME and 1st-COME) as well as of the
spatial extent measures (SP). Table 4.8 confirms this impression. However, with regard to the
sLORETA estimate, it would be preferable if more weight is on the right localization. Even
though the sLORETA method has a small DLE and is commonly used due to its localization
properties, its EMD is much larger than for methods that produce focal estimates but mis-
localize considerably (e.g., the uAO MAP scheme with the gamma hyperprior).
The big advantage of the EMD is that it is applicable to more complex source scenarios just
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as well. In contrast, the extension of other localization measures like the DLE is not straight
forward, neither for the implementation nor from the interpretation of the results (cf. Section
4.6). In multiple source scenarios, more emphasis on the separation properties of the inverse
methods would be preferable. In Table 4.10, sLORETA clearly outperforms MNE with regard
to EMD. This is not fully consistent with the visual impression of the results in such source
scenarios. When different single sources are active, sLORETA is likely to cluster the main
activity in the center of mass of the true source locations and does not reveal the true number of
the active sources. In contrast, the MNE result often shows the right number of local maxima,
but only shifted due to the depth bias. Nonetheless, the EMD in this situation is usually smaller
for sLORETA than for MNE. This relies on the fact that for sLORETA, the mass of the estimate
has to be transported from the inside to the outside, where it is vice versa for the MNE. The
difference is that in case of MNE, the local clusters on the outside need to have the exact
mass that has to be transported to the next source location in order to attain a low EMD. In
contrast, in case of sLORETA this is not important, since all the mass that has to be transported
is clustered in a similar position. Hence it does not matter that much to which of the source
locations it has to be transported.
In summary, Wasserstein metrics, in particular the EMD, are promising tools to investigate the
performance of inverse methods. Especially for multiple source scenarios, where other measures
are not easily available. Still more research on it has to be done to examine and improve certain
features.



5 Conclusion

5.1 Summary

This thesis aimed at four main topics:

1. An elementary but consistent introduction to the mathematical modeling of bioelectro-
magnetism and the specific properties and the development of the field of EEG/MEG
current density reconstruction (Chapter 1).

2. A more comprehensive illustration of the methodology underlying a specific branch of
CDR methods, namely Bayesian statistics, and the introduction of an unifying theoretical
framework called hierarchical Bayesian modeling which comprises many well established
methods but also offers new ways of inference (Chapter 2).

3. The practical implementation of new estimation methods derived from the framework of
hierarchical Bayesian modeling (Chapter 3).

4. The examination and comparison of these methods to established methods for specific
source scenarios (Chapter 4).

In addition, a minor focus was on the connections between Bayesian inference and regularization
approaches.

5.2 Discussion

? The inverse methods introduced in this thesis, i.e., the cmAO MAP and the McmAO MAP
scheme outperformed all other methods for the source scenarios examined (cf. Section 4.5
and 4.6). This confirms the big potential of the hierarchical modeling approach and justifies
further research on that topic.

? As functional brain imaging is a very interdisciplinary and relatively young field of research,
concepts from many different fields entered this development at certain stages, different
approaches were followed in parallel, and the diversity of methods used in practice and
branches of research increased quite soon. Within the publications of the last five years,
a clear trend is visible to search for unifying frameworks to clarify the basic properties
and relations between the different methods for CDR. The hierarchical Bayesian modeling
described in this thesis is a very promising candidate for this task (cf. Section 2.3 and
A.1.8).

? These new methods and concepts may also help to shed new light on the inverse problem
of EEG/MEG in general and to clarify some common beliefs about it (cf. Section 2.4.3).
For instance, a common belief is that “the measurements simply do not contain enough
depth-information“. However, the first study shows that there are actually even multiple
methods that are able to localize within the right depth (cf. Section 4.5). The second study
shows that the presence of a surface-near source does not necessarily conceal all information
about a second, deep-lying source (cf. Section 4.6 and Figures A.21(a) - A.21(f)).
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6 Outlook

Enhancement of the HBM-based Methods The thesis motivated further research on the par-
ticular hierarchical model and the methods based on it. Especially the properties of the real
MAP estimate remain unknown. Within the thesis, only improvements concerning local modes
could be achieved. It remains unclear how well theses modes already approximate the global
mode. For this task, alternative optimization schemes need to be considered. The cmAO MAP
and the McmAO MAP scheme performed best within this thesis. Since their computation takes
quite long compared to other methods that are currently used or developed, faster implementa-
tions have to be found.

Comparison to other HBM-based Estimation Methods Only two of the possible estimation
methods that the HBM offers were examined in this thesis (cf. Section 2.4.2). Especially for CM
estimation we are only aware of Nummenmaa et al. (2007a,b); Calvetti et al. (2009) dealing with
CM estimation as well (and Nummenmaa et al., 2007a only for a theoretical examination of the
model). Most other publications using HBM deal with Variational Bayesian inference methods.
As the CM estimate is different in nature from optimization based methods, a repetition of our
studies involving all other HBM-based estimators would be desirable.

Validation with Real Data The significance of the simulation studies performed in this thesis
could be increased considerably if they are partly confirmed by results for real data, even if only
few data is available that is appropriate for validation.

Multimodal Integration Multimodal integration is a current focus of interest in medical imag-
ing: To overcome the limitations of single modality recordings, techniques are developed to
simultaneously or separately record and fuse different types of information by different imaging
devices. As outlined in Section 2.4.3 HBM is more flexible for the inclusion of different types of
information compared to classical WMNE schemes, and might thus be a promising framework
for multimodal integration. The different possibilities for this and the impact on the different
possible estimation methods have not yet been examined intensely enough, especially for real
data.

Spatio-Temporal Extensions In this thesis, only the instantaneous inverse problem of CDR was
addressed. A simple extension into the temporal domain would be to perform an instantaneous
CDR to each time slice separately. However, due to the ill-condition and varying SNRs, the result
is often unsatisfactory: The time course of the reconstruction is very unsmooth. Spatio-temporal
CDRs aim to invert all time slices simultaneously by incorporating a-priori information about
the spatio-temporal properties of the source activity. There is a variety of different approaches,
and we will not go into details here. For the HBM approach presented in this thesis, temporal
extensions have already been proposed as well, see, e.g., Trujillo-Barreto et al. (2008). We
would suggest to extend the HBM on the level of the hyperparameters rather than on the level
of sources: Temporal information is more of qualitative nature, more suitable to be incorporated
at the higher stages of the model (cf. Section 2.4.3). An inclusion on the level of sources over
temporal source covariance components would need precise information on strength, delay and
decay of the temporal correlation of the source activity, which is not available at the moment.
Furthermore, invalid information can lead to rigid schemes, likely to lose rapid, instationary
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activity. Furthermore, the algorithmic complexity of the estimation process would be increased
at the stage where most computational effort is spend even now. On the level of hyperparameters,
temporal information would be embedded in a soft way, retaining flexibility at the source level.
The algorithmic complexity would be increased at a stage where negligible time is spend by now.
As discussed in the next paragraph, a re-parametrization of the HBM might make it possible to
model temporally delayed inhibition and excitation between brain areas as well.

Modeling Inhibition and Excitation In section 2.4.3 we sketched the problem that within our
model, modeling inhibition and excitation between different brain areas is not possible on level
of the sources, i.e., over covariance components. On the level of hyperparameters, it is pos-
sible, and it would even be a better stage to incorporate such information for similar reasons
as in the last paragraph: Such information is more of qualitative type, as precise information
on strength, temporal delay and duration of inhibition and excitation processes is usually not
available, and invalid information may lead to considerable errors. In addition, as noted in the
previous paragraph, the algorithmic complexity of the estimation process would be increased at
the stage where less time is spend right now.
The standard definition of statistical correlation aimes at length variables that are best described
on a linear scale. To model statistical correlation between scale variables like our hyperparame-
ters, a different parametrization of the HBM is advantageous: In the parametrization we chose
to construct the HBM, the hyperparameters γi describe the scale of the corresponding covariance
components Ci. Another possible parametrization is to let the hyperparameters determine the
logarithm of this scale:

Σs(γ) =
h∑
i=1

exp(γi)Ci

See, e.g., Friston et al. (2008). The log-space is a more natural space to describe a scale variable
like γ (many practical algorithms for estimators formulated in our setting actually operate in log-
space, see Wipf and Nagarajan, 2009). Now a positive correlation between two hyperparameters
encourages them to simultaneously take values that are larger or smaller than their mean, which
means that the scale of the variance of the corresponding source locations is simultaneously
larger or smaller than average. This way, activation in one brain area can trigger activation
in another. A negative correlation between two hyperparameters leads to the opposite: If one
is positive, which means that the corresponding source location has a large variance compared
to the average, the other is likely to be negative, which means that source activity in the
corresponding location is inhibited.

Effects of Realistic Head Modeling Within this thesis only a realistically shaped high reso-
lution FEM model without inner brain compartments and very simplified model was used. As
implied in Section 4.4.1 and 4.5, the interplay between forward model and inverse method may
be non-trivial as well and cause counterintuitive phenomena.

Analytical Treatment of the Depth Bias The results of the first study remain unsatisfactory
in the aspect that it was not clarified where the actual cause for the depth bias lies, and why
some methods suffer from it, while others do not. This has to be examined also from a theoretical
perspective.



A Appendix

A.1 Miscellaneous

A.1.1 Normal, Relaxed and Weighted Least Squares Problems

Here we briefly summarize some facts about least squares problems that frequently occur in the
framework of `2-based regularization as well as in Bayesian modeling with Gaussian priors (for
references, see, e.g., Ben-Israel and Greville, 2003; Kaipio and Somersalo, 2005; Hastie et al.,
2009)
Consider a underdetermined, but full rank matrix equation:

Ax = b, where A ∈ Rm×n, m < n, rank(A) = m

Since there are infinitely many solutions to this system, we are interested in the one with the
smallest `2 norm, which can be formulated as

x = argmin
{
‖x‖22

}
, such that ‖Ax− b‖22 = 0 (A.1)

The solution of this problem is given by the solution of the normal equations, which can be used
to define the pseudo inverse of a non-square matrix A:

AtAx = Atb ⇒ x = A+b where A+ :=(AtA)−1At (A.2)

Especially when the condition of A is bad and b might contain measurement errors, it is helpful
to add some regularization to the problem. This can, e.g., be done by relaxing the problem
(A.1), i.e., substituting the hard constraint ‖Ax− b‖22 = 0 by a softened version:

x = argmin
{
‖Ax− b‖22 + λ‖x‖22

}
, where λ > 0

= argmin

{∥∥∥∥[ A√
λIdn

]
x−

[
b
0

]∥∥∥∥2

2

}

⇔:
[

A√
λIdn

]
x
ls=
[
b
0

]
(A.3)

This is an overdetermined linear least squares problem, whose solution is also given by the
corresponding normal equations:(

AtA + λIdn
)
x = Atb ⇒ x =

(
AtA + λIdn

)−1 Atb

The normal equations for the relaxed problem are referred to as relaxed normal equations for
the original problem Ax = b. For different reasons, one might introduce some weighting into
either the relaxation, the data fit or both, i.e., in the domain of A, its range or in both. Let
Wr ∈ Rm×m and Wd ∈ Rn×n be non singular1:

x = argmin
{
‖Wr(Ax− b)‖22 + λ‖Wdx‖22

}
= argmin

{∥∥∥∥[ WrA√
λWd

]
x−

[
Wrb

0

]∥∥∥∥2

2

}
(A.2)⇐⇒

(
AtWt

rWrA + λWt
dWd

)
x = AtWt

rWrb

⇐⇒ x =
(
AtWt

rWrA + λWt
dWd

)−1 AtWt
rWrb (A.4)

1This scheme easily extents to non-square weightings, see e.g., Calvetti and Somersalo, 2008a.
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II A.1. MISCELLANEOUS

One speaks of a weighted or weighted relaxed least squares problem, and of weighted or weighted
relaxed normal equations, depending on whether relaxation is used or not (set λ = 0 in the
equations above).

A.1.2 Matrix Calculus

In this thesis we use some results from the theory of block partitioned matrices, which we will
list in the following. Proofs can, e.g., be found in Bernstein (2009).
Let

Γ =
[
Γ11 Γ12

Γ21 Γ22

]
∈ R(n+m)×(n+m)

where Γ11 ∈ Rn×n, Γ12 ∈ Rn×m, Γ21 ∈ Rm×n and Γ22 ∈ Rm×m are matrices, such that Γ11 and
Γ22 are not singular.

Definition 10 (Schur complements) The Schur complements Γ̃jj of Γjj, j = 1, 2, are
defined by:

Γ̃22 = Γ11 − Γ12Γ−1
22 Γ21, Γ̃11 = Γ22 − Γ21Γ−1

11 Γ12

The Schur complements play an important role in calculations involving Γ:

Lemma 1 (Schur identity)

|Γ| = |Γ11| |Γ̃11| = |Γ22| |Γ̃22|

Lemma 2 (Block Matrix Inversion)

Γ−1 =
[

Γ̃−1
22 −Γ̃−1

22 Γ12Γ−1
22

−Γ̃−1
11 Γ21Γ−1

11 Γ̃−1
11

]
=
[
Γ−1

11 + Γ−1
11 Γ21Γ̃−1

11 Γ21Γ−1
11 −Γ−1

11 Γ12Γ̃−1
11

−Γ−1
22 Γ21Γ̃−1

22 Γ−1
22 + Γ−1

22 Γ21Γ̃−1
22 Γ12Γ−1

22

]
By equating the blocks and re-substituting the Schur complements the above formulas yield some
useful identities (sometimes referred to as “matrix inversion lemma“):(

Γ11 − Γ12Γ−1
22 Γ21

)−1 = Γ−1
11 + Γ−1

11 Γ12

(
Γ22 − Γ21Γ−1

11 Γ12

)−1 Γ21Γ−1
11(

Γ11 − Γ12Γ−1
22 Γ21

)−1 Γ12Γ−1
22 = Γ−1

11 Γ12

(
Γ22 − Γ21Γ−1

11 Γ12

)−1(
Γ22 − Γ21Γ−1

11 Γ12

)−1 Γ21Γ−1
11 = Γ−1

22 Γ21

(
Γ11 − Γ12Γ−1

22 Γ21

)−1 (A.5)(
Γ22 − Γ21Γ−1

11 Γ12

)−1 = Γ−1
22 + Γ−1

22 Γ21

(
Γ11 − Γ12Γ−1

22 Γ21

)−1 Γ12Γ−1
22 (A.6)

From (A.5) we can deduce an identity that can be used for the inverse computations in Chapter
1.3.2: Choosing Γ11 := Σε, Γ12 :=−L, Γ21 := Lt and Γ22 := Σ−1

s it follows that

ΣsLt(LΣsLt + Σε)−1 = Γ−1
22 Γ21

(
Γ11 − Γ12Γ−1

22 Γ21

)−1

(A.5)
=
(
Γ22 − Γ21Γ−1

11 Γ12

)−1 Γ21Γ−1
11 =

(
Σ−1
s + LtΣ−1

ε L
)−1 LtΣ−1

ε (A.7)

Note that on the left hand side, a m×m matrix has to be inverted, whereas it is a n×n matrix
on the right hand side.
From (A.6), an identity that is helpful for the computation of the conditional covariance can be
derived (see (3.9)): Using the same definitions as above, it follows that

Σs − ΣsLt
(
Σε + LΣsLt

)−1 LΣs = Γ−1
22 + Γ−1

22 Γ21

(
Γ11 − Γ12Γ−1

22 Γ21

)−1 Γ12Γ−1
22

(A.6)
=
(
Γ22 − Γ21Γ−1

11 Γ12

)−1 =
(
Σ−1
s + LtΣ−1

ε L
)−1 (A.8)



APPENDIX A. APPENDIX III

A.1.3 Theoretical Comparison of Statistical Estimators

Remind that in our framework, every variable is modeled as a random variable. Thus an esti-
mator ŝ(b) for the random realization s can also be considered as a random variable, as it takes
different values depending on the realization of the noisy measurement B. A main concern of
statistical estimation theory is to answer the question, how this estimator Ŝ = ŝ(B), now seen
as a random variable, behaves in general rather than just for one given single measurement b. It
might be that it gives good estimations of s for some realizations of B while giving catastrophic
results for others. A natural tool to examine this behavior quantitatively is a cost function (or
termed loss function in statistics) Ψ : Rn × Rn → R so that Ψ(s, ŝ) gives a measure for the
desired and undesired properties of ŝ. The Bayes cost is then defined as:

BC(ŝ) = E [Ψ(S, ŝ(B))] =
∫∫

Ψ(s, ŝ(b)) p(s, b) ds db

=
∫∫

Ψ(s, ŝ(b)) plike(b|s) db pprior(s) ds

=
∫
BC(ŝ|s) pprior(s) ds = E [BC(ŝ|s)]

where

BC(ŝ|s) =
∫
Ψ(s, ŝ(b)) plike(b|s) db

is the conditional Bayes cost.
For a given cost function, one theoretical approach to find an estimator, called Bayes cost method
is to choose the one that minimizes the Bayes cost:

BC(ŝBC) ≤ BC(ŝ) ∀ ŝ : Rm → Rn

This is called the Bayes estimator. Note that this estimator is the one that performs best for
this cost function on average, it may not be optimal over other criteria. By using Bayes formula,
we can write the Bayes cost in the form:

BC(ŝ) =
∫∫

Ψ(s, ŝ(b)) ppost(s|b) ds p(b)db

Since the marginal density p(b) satisfies p(b) ≥ 0 and ŝ(b) does only depend on b, the minimizer
of the Bayes cost is found by solving

ŝBC(b) = argmin
ŝ

{∫
Ψ(s, ŝ(b)) ppost(s|b) ds

}
= argmin

ŝ
{E [Ψ(s, ŝ(b))|b]} (A.9)

In the following, we will show how to derive the two estimators used in this thesis and an
additional one within this framework.

CM-estimation: The most common choice for the cost function is Ψ(s, ŝ(b)) = ‖s− ŝ‖22 which
leads to the mean square error criterion, as the Bayes cost takes the form:

BC(ŝ) = E
[
‖S − Ŝ‖22

]
The corresponding Bayes estimator is called mean square estimator and from (A.9) it turns out
that:

ŝMS := ŝBC = argmin
ŝ

{
E
[
‖S − ŝ‖22

]}
=
∫
s ppost(s|b) ds = ŝCM

That is, our previously defined conditional mean estimator is the mean square estimator. One
can further show that the CM-estimated is unbiased and that it is also the minimum error
variance estimator.
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Geometric median-estimation: Alongside the mean and the mode of a distribution which
represent center of mass and maximal mass, the median is another characteristic point: For one
dimensional distributions, it divides the support of the density in two halves in such a way that on
both sides equal probability mass is located, i.e., 50 %. Since the median is very robust against
outliers, it is used in a wide range of applications from clustering to noise removal in signal
processing. However, its theoretical treatment as well as its generalization to high dimensional
problems like ours is not trivial, and thus its is seldom examined. One generalization is given by
the geometric median which is the Bayes estimator for the cost function Ψ(s, ŝ(b)) = ‖s− ŝ‖1.

MAP-estimation: The MAP-estimate is just asymptotically a Bayes estimator. One way to
infer it within our framework is to define it as the limit ε→ 0 of the solution to the Bayes cost
optimization for

Ψε(s, ŝ) =

{
0, if ‖sk − ŝk‖ < ε for all k = 1, . . . , n
1 otherwise,

because in this case, we have to solve

ŝBC(b) = argmin
{∫

Ψε(s, ŝ(b)) ppost(s|b) ds
}

= argmin

{∫
|sk−ŝk|>ε

ppost(s|b) ds

}

= argmin

{
1−

n∏
k=1

∫ ŝk+ε

ŝk−ε
ppost(s|b) dsk

}
≈ argmin {1− (2ε)nppost(ŝ|b)}
= argmax {ppost(ŝ|b)}
= ŝMAP (b)

The limit of Ψε for ε → 0 is called uniform cost or 0-1 loss, as it penalizes every deviation of ŝ
from s equally.
So in summary, while the CM-estimator penalizes large errors heavily, while neglecting small
ones, the MAP-estimate treats small and large errors equally. Their statistical estimation con-
ception is therefore completely different, and from the Bayes cost formalism, it is clear, why
it follows that their statistical properties are also completely different: They aim to minimize
completely different error-measures. Nevertheless, both estimators are optimal over their own
criteria. In EEG/MEG source-reconstruction, most of the existing methods aim to find a MAP-
estimator, but that is for practical reasons rather than for theoretical. As mentioned above,
the CM-estimator has some very attractive properties, too, and in other fields of parameter
estimation, it is the standard estimator for these reasons.
As a final remark, comparing with A.3 one could have used the scaled minimum support stabi-
lizer as a cost function to derive the MAP estimate as well, which poses the question, whether
it is possible to derive the MAP estimate as a limit p↘ 0 of an suitably scaled `p-based Bayes
cost function. This would ease the comparison between the different estimators.

A.1.4 Gaussian Densities

In this section, some basic properties of Gaussian random variables are summarized. For proofs
and further references, see, e.g., Kaipio and Somersalo (2005); Klenke (2008).
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Affine Transformation and Mixing

The following rules are used in many situations in this thesis:

Lemma 3 Let X1 ∼ Nn(µ1,Γ1), X2 ∼ Nn(µ2,Γ2) be two mutually independent Gaussian ran-
dom variables, and c ∈ Rm, A ∈ Rm×n.

(i) Zaff = AX1 + c is a m dimensional Gaussian random variable with mean Aµ1 + c and
covariance matrix AΓ1At, i.e., Zaff ∼ Nm(Aµ1 + c,AΓ1At).

(ii) Zsum = X1 + X2 is a n dimensional Gaussian random variable with mean µ1 + µ2 and
covariance matrix Γ1 + Γ2, i.e., Zsum ∼ Nn(µ1 + µ1,Γ1 + Γ2).

Rule (i) immediately yields an effective scheme to generate M samples xi from a Gaussian
random variable X1 defined as above:

Algorithm 8 (Sampling from Gaussian Densities)

1. Find any real matrix C such that C Ct = Γ1 (Usually via a normal cholesky decomposition
given that Γ1 is positive-definite, and a variant based on an eigenvalue decomposition in
the degenerate case).

2. For i = 1, . . . ,M draw ωi from ⊗nk=1N1(0, 1), i.e., componentwise from a one dimensional
standard normal distribution (e.g., by using the Box–Muller transform).

3. Set xi = Cωi + µ1 for all i.

However, such a scheme is only useful if a large number of samples M have to be drawn from
the same distribution. For the Ss step used in the AS CM algorithm for CM approximation
(cf. Section 3.2) the conditional density that is sampled changes in every step. Computing both
mean and covariance matrix over (3.8) and (3.9) and a cholesky decomposition of the covariance
matrix would result in unnecessary overhead, and is numerically not stable, as discussed in the
corresponding section. We demonstrate in the following that the proposed alternative scheme is
valid for this task, i.e., to generate a sample of the g dimensional s̃ from the conditional density
given by (3.8) and (3.9) by an affine mixing of two m and g dimensional standard normal
distributed random variables ωm and ωg via solving the least squares problem (3.10):

(3.10) ⇐⇒
[

1
σ L̃

D−1/2

]
s
ls=
[
σ−1b

0

]
+
[
ωm
ωg

]
:=
[
σ−1b

0

]
+ ω

(A.1.1)⇐⇒ s =
([

1
σ L̃t D−1/2

] [ 1
σ L̃t

D−1/2

])−1 [
1
σ L̃t D−1/2

]([ 1
σ b
0

]
+ ω

)
⇐⇒ s =

(
1
σ2 L̃tL̃ + D−1

)−1 [
1
σ L̃t D−1/2

]
ω +

(
1
σ2 L̃tL̃ + D−1

)−1
1
σ2 L̃tb

From Lemma 3 it follows that since ω ∼ N (0, Idm+g), s̃ also follows a Gaussian distribution
with mean and covariance matrix given by:

E[s] =
(

1
σ2 L̃tL̃ + D−1

)−1
1
σ2 L̃tb

(A.7)
= DL̃t

(
L̃DL̃t + σ2Idm

)−1
b = (3.8)

Cov[s] =
(

1
σ2 L̃tL̃ + D−1

)−1 [
1
σ L̃t D−1/2

] [ 1
σ L̃

D−1/2

]
︸ ︷︷ ︸

Id

((
1
σ2 L̃tL̃ + D−1

)−1
)t

=
(

D−1 +
1
σ2

L̃tL̃
)−1

= (3.9)
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Joint, Conditional and Marginal Distributions

Theorem 1 Let X1 be a n dimensional and X2 a m dimensional Gaussian random variable
whose joint density is of the form

p(x1, x2) ∝ exp

(
−1

2

[
x1 − µ1

x2 − µ2

]t [Γ11 Γ12

Γ21 Γ22

]−1 [
x1 − µ1

x2 − µ2

])
Then the marginal densities of X1 and X2 are given by:

p(x1) =
∫

Rm
p(x1, x2) dx2 = Nn(x, µ1,Σ11)

p(x2) =
∫

Rn
p(x1, x2) dx1 = Nn(x, µ2,Σ22)

Furthermore, the probability distribution of X1 conditioned on X2 = x2, i.e., p(x1|x2) is of the
form:

p(x1|x2) ∝ exp
(
−1

2
(x1 − µ̄1)tΓ̃−1

22 (x1 − µ̄1)
)

where µ̄1 = µ1 + Γ12Γ−1
22 (x2 − µ2)

That means, that p(x1|x2) = Nn(µ1 + Γ12Γ−1
22 (x2−µ2), Γ̃22) where Γ̃22 is the Schur complement

of Γ22 as defined in A.1.2.

Now we apply this theorem to a linear model with additive noise, i.e.

Y = AX + E , where A ∈ Rm×n

We further assume that X and E are mutually independent and that X ∼ N (µx,Γpr) and
E ∼ N (µε,Γnoise). We could compute the posterior distribution directly by Bayes rule (2.3),
however, the above formulas yield a more gentle way to do so. From A.1.4, it follows that
Y ∼ N (µy,AΓprAt + Γnoise), with µy := Aµx + µE . To set up the joint distribution of X and Y ,
we have to compute E[(X − µx)(Y − µy)t] and E[(Y − µy)(X − µx)t]:
Substituting Y by X and E and using the mutual independence of both it follows directly that

E
[
(X − µx)(Y − µy)t

]
= E

[
(X − µx)(A(X − µx)− (E − µε)t)

]
= ΓprAt

E
[
(Y − µy)(X − µx)t

]
= E

[
(A(X − µx)− (E − µε)(X − µx)t)

]
= AΓpr

Thus the joint distribution is given by

p(x, y) ∝ exp

(
−1

2

[
x− µx
y − µy

]t [ Γpr ΓprAt

AΓpr AΓprAt + Γnoise

]−1 [
x− µx
y − µy

])
Then by theorem 1, the posterior density of X given Y is

ppost(x|y) = N (x̂,Γpost)

where

x̂ = µx + ΓprAt(AΓprAt + Γnoise)−1(y −Aµx − µε)
(A.5)
= (Γ−1

pr + AtΓ−1
noiseA)−1(AtΓ−1

noise(y − µε) + Γ−1
pr µx)

and

Γpost = Γpr − ΓprAt(AΓprA + Γnoise)−1AΓpr
(A.6)
= (Γ−1

pr + AtΓ−1
noiseA)−1

The last line states that in the sense of quadratic forms, Γpost 6 Γpr. As the covariance expresses
the width of the density this means, that a measurement can never increase the uncertainty.
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A.1.5 Relation Between WMNE and Gaussian Prior Models

In Section 2.3 a direct link between the weighting matrix of the WMNE regularization scheme
and the covariance matrix of a Gaussian prior in the statistical framework is shown. Up to a
scaling by

√
λ
σ , W is an inverse square root of the covariance matrix Σs. This connection can

help to understand both approaches better:

? First, we start off with a WMNE scheme, with a regular W. Since ‖W s‖2 = ‖U W s‖2
for any unitary U, not W but V := Wt W is the central ingredient that enters the
method: ‖W s‖22 = (W s)t(W s) s = st (WtW) s = st V s. Given some possible solutions
s (this means that the data deviation is not very large), those having large components
in the eigenspaces of V belonging to large eigenvalues will be penalized heavily and will
consequently be rejected. Possible solutions s, mainly consisting of components in the
eigenspaces of V belonging to small eigenvalues, will be favored. This implicit pruning of
undesired solution components finds its explicitly observable counterpart in the statistical
framework if we compute the inverse of V and use it as a covariance matrix C for a zero-
mean Gaussian prior on s. The eigenspaces of C are the same as those of V, but to the
reversed eigenvalues. In the statistical framework an eigenspace of the covariance matrix
belonging to a large eigenvalue means that it is very likely that the solution has a large
component in that eigenspace.
For instance, if we choose W to be a discretized Laplacian operator, the solutions given by
the WMNE are usually spatially very smooth. This is not surprising, because if we proceed
as described above and calculate the corresponding covariance matrix it is a dense matrix
imposing very strong correlations between all locations, only decreasing slowly with the
distance between them. Thus a spatially smooth solution is extremely likely.

? Now we start in the statistical framework and want to compute the MAP estimate for
a Gaussian prior on s having a covariance matrix C and zero mean. If we reverse the
above procedure, we end up with a WMNE scheme with a weighting matrix C−1/2, with
C−1/2 being any of the square roots of C−1 = V. The penalty functional takes the form
‖C−1/2 s‖22. In the field of signal processing, this transformation of s via C−1/2 is called
whitening transformation as it decorrelates the entries of s, i.e., if S ∼ N (0,C) and Y =
C−1/2 S then Y ∼ N (0, Id). Applied to data coming from different distributions, this
transform has a probabilistic selecting effect: For a set of samples {xi}i drawn fromN (0,C)
and a set of samples {x̄i}i drawn from N (0, C̄) with the same average signal power (|C| =
|C̃|), the set {‖C−1/2xi‖2}i will on average contain smaller values than {‖C−1/2x̄i‖2}i.
That means that estimates s that are likely to come from our prior distribution, which
on the other hand means that they fulfill our modeling assumptions, will be punished less
hard by the corresponding penalty functional in the WMNE scheme.

A.1.6 Recast of the EMD Problem into Standard Form

In this section, we show how to recast the minimization problem in Section 3.7 into the standard
formulation used in linear programming:

min
x

(
ct · x

)
such that


A x 6 b,

Aeq x = beq,

lb 6 x 6 ub

(A.10)
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For this purpose, let:

c := [Dt
(·,1), . . . ,D

t
(·,k)]

t

Aeq :=
[
1tk ⊗ Idτ
Idk ⊗ 1tτ

]
where 1l ∈ Rl is given by (1tl)i = 1 ∀i = 1, . . . , l

beq := (wp1 , . . . , wpτ , wq1 , . . . , wqk)t

lb := 0 ∈ Rk·τ

We do not need any inequality constraints, and the upper bounds are automatically reflected in
the equality constraints. Hence A, b and ub do not need to be specified. Now if x is the solution
of this linear programming problem, it is easy to see that Γ given by Γi,j = x(j−1)l+i solves the
EMD problem (3.14) subject to the constraints (3.15) - (3.17).

A.1.7 Gamma and Inverse Gamma Distributions

In this section, basic properties of the distributions used as hyperpriors in the concrete studies
in Chapter 4 are summarized.
Both distributions are a two-parameter family of continuous probability distributions on the
positive real line. Their density function is determined by a shape parameter α > 0 and a scale
parameter β > 0:

Gamma distribution: p(x;α, β) =
β−α

Γ(α)
xα−1 exp

(
−x
β

)
Inverse gamma distribution: p(x;α, β) =

βα

Γ(α)
x−α−1 exp

(
−β
x

)
where Γ(z) =

∫ ∞
0

tz−1e−t dt is the Gamma function.

In Figure A.1 both densities are plotted for different parameter values, in Table A.1 the main
characteristics are listed. Gamma and inverse gamma distributions are commonly used to model
scale variables such as the variance of a random process. They are closely connected, namely,
if X follows a gamma distribution with shape α and scale β, then Y :=X−1 follows an inverse
gamma distribution with shape α and scale β−1, which explains the name of the inverse gamma
distribution. While both seem quite similar at first glance, there are certain differences, which
can lead to important differences in the behavior of HBM equipped with either one or the other:

? Energy: The energy of the hyperprior (see Section 2.3) is one summand of the whole energy
of the posterior (cf. (2.8)). The shape of the posterior energy is the central component
which determines the properties of MAP and CM estimation. In Figure A.2 the energies
of gamma and inverse gamma distribution are plotted for different parameter values. It
reveals a central difference between both distributions: For the gamma distribution, a
short calculation shows that the energy is either convex (α > 1) or concave (α < 1) on its
whole domain. For the inverse gamma distribution, it is convex on the left and concave
on the right side of its mode (β/(α+ 1)).

? Outlier: The behavior of the limits x→∞ and x→ 0 are switched for gamma and inverse
gamma distribution. As a result, the occurrence of outliers (realizations of a random
variable that are numerically distant from the other realizations within a sample of finite
size) substantially differs: The limit x →∞ is dominated by an exponential decay in the
gamma distribution, and a power law in the inverse gamma distribution. As a result, the
inverse gamma distribution bears way more probability weight in its right tail2 and admits
more outliers (see, e.g., Calvetti and Somersalo, 2008a for an illustration).

2One speaks of heavy-tailed distributions, as the tail is not exponentially bounded.
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Figure A.1: Plots of the pdfs of inverse gamma (left) and gamma distribution (right).

Table A.1: Different characteristics of the gamma and the inverse gamma distribution

Type Mean Mode Variance

Gam. α β (α− 1)β (for α > 1) α β2

Inv. Gam. β
α−1 (for α > 1)

β
α+1

β2

(α−1)2(α−2)
(for α > 2)

? Limits: Both distributions are often used to approximate a non-informative hyperprior
of the form p(x) ∝ x−1. The limits α → 0, β → ∞ for the gamma, and α, β → 0 for
the inverse gamma distribution lead to this limiting distribution. As discussed in Gelman
(2006), this might lead into a dilemma: The non-informative hyperprior is chosen to let the
data determine the scale variable automatically and without requiring a-priori knowledge
on it, especially to prevent that the estimation is sensitive to a scale manually predefined
by the analysist. Still, the non-informative hyperprior is improper, and in contrast to some
other improper hyperpriors, it leads to an improper posterior (Gelman, 2006; Nummen-
maa et al., 2007a). When approximated by proper hyperpriors, this limiting improperness
of the posterior leads to the phenomena that the estimates become very sensitive to the
parameters of the approximating hyperpriors (Gelman, 2006). This is of course contra-
dictory to intention of introducing the non-informative hyperprior which was to avoid a
sensitivity to the manual choice of the hyperpriors parameters. Yet, Gelman (2006) only
examined the inverse gamma hyperprior. It might be, that the gamma hyperprior yields
a less sensitive approximation, since the way it approximates x−1 is substantially different
from the way the inverse hyperprior does: The value of the inverse gamma hyperprior
at the singularity x = 0 of the limiting distribution is always finite, while the gamma
hyperprior is also singular for α < 1. However, we cannot purse this issue any further
here.

A.1.8 The Functionals behind AO-based MAP Approximation

In this section we demonstrate that in principle, a variety of well known optimization schemes for
regularization based approaches to CDR can be assessed naturally by applying the AO scheme
for MAP approximation to the HBM given in Section 4.2:
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Figure A.2: Plots of the energy of inverse gamma (left) and gamma distributions (right).

Gamma Hyperprior: If we insert the particular update rule (4.6) into (3.5) we get a fixed point
iteration for this problem:

s = argmin
s∈Rn

{
‖b− Ls‖2 + σ2

k∑
i=1

‖si∗‖2

γi

}

(4.6)
= argmin

s∈Rn

‖b− Ls‖2 +
2σ2

β

k∑
i=1

‖si∗‖2

η +
√
η2 + ‖si∗‖2

β

 , where η = (α− 2.5)

For the choice of α↘ 2.5, i.e., η ↘ 0, and λ = σ2
√

2β−1 this simplifies to:

s = argmin
s∈Rn

{
‖b− Ls‖22 + σ2

√
2β−1

k∑
i=1

‖si∗‖2

}
= argmin

s∈Rn

{
‖b− Ls‖22 + λ‖s∗‖1

}
where ‖s∗‖1 is the `1-norm of the source amplitudes ‖si∗‖2. This type of regularization is called
minimum current estimate (MCE, see Matsuura and Okabe, 1995; Uutela et al., 1999) in the
context of EEG/MEG. The AO scheme is now essentially similar to a special variant of the
FOCUSS algorithm (Gorodnitsky and Rao, 1997). In Wipf et al. (2007) this connection of MCE
and FOCUSS solution has also been pointed out from the empirical Bayesian point of view.
By choosing α > 2.5 one avoids the problem of dividing by components si near to zero, and
obtains a regularized algorithm for finding the MCE.

Generalized Gamma Hyperprior: Remind that the gamma distribution corresponded to the
case ζ = 1 for the generalized gamma distribution (cf. (4.1)). For p with 0 < p < 2 a similar
reasoning as above with the generalized gamma distribution with ζ = p/(2− p) will result in:

s = argmin
s∈Rn

{
‖b− Ls‖22 + λ‖s∗‖pp

}
, with λ = σ2

(
2ζ
βζ

)1/(ζ+1)

For details, see Calvetti et al. (2009).

Inverse Gamma Hyperprior: If we insert the particular update rule (4.7) into (3.5) we get a
fixed point iteration for this problem:

s = argmin
s∈Rn

{
‖b− Ls‖2 + 2σ2(α+ 1.5)

k∑
i=1

‖si∗‖2

‖si∗‖2 + 2β

}
(A.11)
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Figure A.3: Scaled minimum support stabilizer functional (ξ + 1)x2/(x2 + ξ) for different values of ξ.

The regularization term x2/(x2 + ξ) is called minimum support stabilizer as it converges to
‖x‖0 for ξ ↘ 0 and was used in EEG/MEG for the definition of the minimum support estimate
(MSE ) (Nagarajan et al., 2006). Depending on the choice of β, it takes a different shape (and
for a fixed β, α determines the relative weight of the regularizer). To illustrate this, Figure A.3
shows the shape of the function (ξ+1)x2/(x2 +ξ) for different values of β (the factor (ξ+1) was
just included for scaling). The function always starts with a quadratic-like convex part, until it
passes to a concave part in which it ends up in a plateau. Varying α and β determines, which
part of the minimum support stabilizer is of practical relevance for the problem (A.11): If the
convex dominates for reasonable values of si, the solution is alike to those obtained by MNE, and
(practically) unique. If the concave part dominates, the solution will be focal but non-unique,
and the mode found by the AO scheme will be very sensitive to the initialization. Further
relations between estimates in hierarchical models and functionals and optimization schemes
have been shown: See Calvetti and Somersalo (2008a) for the relation of Total Variation (Rudin
et al., 1992) and Perona–Malik (Perona and Malik, 1990) penalties to MAP approximation
with Gaussian noise and Bardsley et al. (2010) for an extension to Poisson noise. Wipf and
Nagarajan (2009) outline how to derive FOCUSS, MCE and sLORETA (Pascual-Marqui, 2002)
within another estimation framework than the full-MAP scheme discussed here, namely the
framework of γ-MAP and S-MAP estimation (see Section 2.4.2). Note however that there are
estimators whose approximation methods cannot be recovered from another framework, like the
CM-estimator for the model considered here.

A.1.9 The Student’s T-distribution as an Implicit Prior on the Source Amplitudes

In this section we show that using an inverse gamma hyperprior in the HBM given in Section
4.2 leads to the Student’s t-distribution as an implicit prior on the (scaled) source amplitudes
‖si∗‖: We start off by using 2.5 to compute the implicit prior on S:

p(s) =
∫

Rh
p(s|γ) p(γ) dγ

4.8∝
h∏
i

∫
R

exp

(
−

1
2‖si∗‖

2 + β

γi
+ (−(α+ 3/2)− 1) ln(γi)

)

As noted in Section 4.2, the integrand is proportional to an inverse gamma distribution with
parameters β̄i = 1

2‖si∗‖
2 + β and ᾱi = (α + 3/2), and therefore the integral has to be given
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Figure A.4: Plots of the pdfs of the (one-sided) Student’s t-distribution vs. the normal distribution for
different values of ν.

by the normalization of the corresponding distribution. Comparing the expression with the
corresponding terms in Section A.1.7, this leads to

h∏
i

∫
R

exp

(
−

1
2‖si∗‖

2 + β

γi
+ (−(α+ 3/2)− 1) ln(γi)

)
=

h∏
i

Γ(ᾱi)

β̄i
ᾱi
∝

h∏
i

(
1
2‖si∗‖

2 + β
)−(α+3/2)

∝
h∏
i

(
1 +

t2

ν

)−1
2 (ν+1)

with ν := 2(α+ 1), t :=
‖si∗‖√
γmode

, γmode :=
β

α+ 1
(cf. A.1.7)

This is a Student’s t-distribution for the scaled source amplitudes t with the degrees of freedom
ν (Gelman et al., 2003). It commonly arises in Bayesian inference when assuming normally
distributed parameters of interest with unknown variance that is inverse gamma distributed
(Gelman et al., 2003). More precisely, it is the positive part of it, since t > 0 by definition.
Figure A.4 shows plots of its pdf for different values of α in comparison to a one-sided standard
normal distribution. For α → ∞, i.e., ν → ∞ it approaches the standard normal distribution.
Even so, for small α the scaling of both distributions differs considerably: Since the normal
distribution decays exponentially for t → ∞ it prohibits large outliers and imposes a typical
length scale for the scaled source amplitude t. A standard normal prior on t hence promotes
non-focal source activity, which is apparent, since it is equivalent to a uniform diagonal Gaussian
prior on S and thus to a MNE with a certain regularization parameter λ (cf. Section 2.3). The
Student’s t-distribution on the other hand is a heavy-tailed distribution, which decays like a
power law for t → ∞ (cf. Section A.1.7). As a consequence, it allows for large outliers and
promotes focal source activity.

A.1.10 Computation Time

In this section, the computation times for different implementations of the AS CM scheme are
compared. Since the other methods rely on the same schemes, the results can be transferred.
For all testing scenarios, the burn-in size Q was set to 50 and the sample size R to 300. The same
parameters as in the main studies in Chapter 4 were used. A noise level of 5% was assumed. The
effect of using the implicit multi-threading capabilities of Matlab was also examined by using
1,2 or 4 cores of a 4 core CPU system (Intel Core 2 Quad @ 2.83 GHz)
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Table A.2: Mean computation times (sec) of the AS CM scheme for different implementations of the
Ss step.

N̄s 1 core 2 cores 4 cores

Analytical 100 4.23 ± 0.02 2.93 ± 0.09 2.36 ± 0.02
Adapted CGLS 100 9.31 ± 1.06 5.36 ± 0.80 5.88 ± 0.87
Standard CGLS 20 21.28 ± 1.60 21.71 ± 1.56 21.82 ± 1.94
LSQR 20 22.86 ± 1.82 22.84 ± 2.31 22.80 ± 1.92
mldivide 2 208.08 ± 0.01 151.36 ± 0.01 123.70 ± 0.05

Table A.3: Mean computation times (sec) per right hand side using the blocked inversion scheme.

Nb
¯Nrep 1 core 2 cores 4 cores

2 300 8.78 6.70 8.04
4 200 6.73 4.83 4.84
16 100 3.79 2.83 2.65
64 25 3.28 2.58 2.34
256 10 3.59 2.90 2.66
1024 5 3.71 2.98 2.75

First, the single inversion scheme was tested with different implementations of the Ss step (cf.
3.4.1):

1. Algorithm 6 to compute the analytical solution.

2. An adapted implementation of the CGLS algorithm (cf. Section 3.5).

3. A standard implementation of the CGLS algorithm (cf. Section 3.5).

4. The LSQR algorithm implemented by Matlab (cf. Section 3.5).

5. The back slash operator of Matlab (mldivide).

For the implementations 2.-5. the preconditioning in the form of (3.7) and the sparse matrix
format by Matlab are used. Table A.2 lists the mean computation times, averaged over an
implementation-dependent number of single dipole sources N̄s and the corresponding standard
deviations. As expected, implementations based iterative solvers (CGLS and LSQR) show a
larger variation. The results also given an impression how long a typical inversion with AS CM
based method like cmAO MAP takes: If Q = 1 000 and M = 50 000 are used, Algorithm 6 takes
5 - 6 minutes on a modern 4 core CPU architecture. As a second study, the performance of the
blocked inversion scheme is evaluated (cf. Section 3.6) for a different number of measurements Nb

that are inverted simultaneously. Note that here only the adapted implementation of the CGLS
algorithm can be used to compute the (blocked) Ss step. Table A.3 lists the mean computation
times over ¯Nrep repetitions and divided by Nb.
The implementations that have been developed and optimized within the work for this thesis
(i.e., the analytical approach and the single and blocked adapted CGLS algorithm) exploit the
characteristics of the problem and hence clearly outperform the others. The results also suggest
not all implementations benefit from parallelization in the same way, and that this has to be
examined more carefully.

A.2 Figures
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(a) Left: MNE on grid 2 (k = 169). Right: Cubic Interpolation of MNE on grid 1 (k = 49) to grid 2. The
maximal error in a single component between the (normalized) MNE and the (normalized) interpolation is 0.034.

(b) Left: MNE on grid 3 (k = 625). Right: Cubic Interpolation of MNE on grid 1 (k = 49) to grid 3. The
maxmial error in a single component between the (normalized) MNE and the (normalized) interpolation is 0.002.

Figure A.5: Increasing source grid resolution vs. interpolation for MNE. The spatial distribution of the
interpolation error suggests that the main cause for the error are boundary effects.
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Figure A.6: Figure 2.1 in higher resolution
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Figure A.7: Transversal, sagittal and coronal slices from the T1 (upper row) and T2 weighted (bottom
row) MRI images (resolution: 1 mm, 256x256x256 voxel)

Figure A.8: Artificial full coverage EEG sensor configuration consisting of 134 EEG sensors: The sensors
were placed uniformly on the surface of a sphere around the center of the model and were
then projected onto the head surface
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Figure A.9: The sum of the `2 norms of the three gain-vectors at a given position is depicted. The
influence of the hole at the base of the skull (foramen magnum) on the magnitudes of the
deep-lying sources is noticeable (this feature occurs with realistic sensor configurations as
well)

Figure A.10: Dipole used for multimodality illustration
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Figure A.11: The locations of the 1000 source space nodes that were constructed in the following way:
The nodes of the gray matter surface are clipped below a certain z-value to exclude the
brain stem volume, and the convex hull of the remaining nodes is constructed and slightly
contracted. Of all FEM nodes only the ones within the resulting surface are labeled
as active. After that, all of these nodes that do not fulfill a condition related to the
approach used for forward computation (the Venant approach) are delabeled again. A
regular grid is laid through the whole volume, and every grid node whose nearest FEM
node is labeled is accepted. If the number of accepted grid nodes matches the desired
number of source nodes, the locations are fixed, and the lead-field is computed. If not, an
automatic procedure adapts grid size and offset of the grid until the desired grid is found.
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Figure A.12: AS CM approximation (red-yellow cones) for a single dipole (green cone).

Figure A.13: cmAO MAP approximation (red-yellow cones) for a single dipole (green cone).

Figure A.14: McmAO MAP approximation (red-yellow cones) for a single dipole (green cone).
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Figure A.15: uAO MAP approximation (red-yellow cones) with inverse gamma hyperprior for a single
dipole (green cone).

Figure A.16: uAO MAP approximation (red-yellow cones) with gamma hyperprior for a single dipole
(green cone).

Figure A.17: sLORETA result (red-yellow spheres) for a single dipole (green cone).



APPENDIX A. APPENDIX XXI

Figure A.18: MNE result (red-yellow cones) for a single dipole (green cone).

Figure A.19: WMNE result (red-yellow cones) with `2 weighting for a single dipole (green cone).

Figure A.20: WMNE result (red-yellow cones) with regularized `∞ weighting for a single dipole (green
cone).
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(a) Two sources chosen for visualization.

(b) MNE (c) sLORETA

(d) AS CM, M = 200 000 (e) cmAO MAP, M = 200 000

(f) McmAO MAP

Figure A.21: An Example for the masking of deep-lying sources.
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Ahlfors, S. P., Ilmoniemi, R. J., and Hämäläinen, M. (1992). Estimates of visually evoked cortical
currents. Electroencephalogr Clin Neurophysiol, 82(3):225–36.
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