Felix Lucka

welcome to my academic web site

Iterative image reconstruction and deep learning

Blending deep learning and iterative image reconstruction has shown great promise to obtain high quality reconstructions from noisy, sub-sampled data and is therefore hot topic in inverse problems at the moment. We adopted an particular approach to enhance the reconstruction of blood vessel structures from sub-sampled, limited-view 3D photoacoustic tomography (PAT) in vivo. Many thanks to Andreas Hauptmann, who did the main work for this exciting project. The paper with all the results can be found on arXiv. [Update: It has been published in IEEE-TMI.]

SPIE Proceedings published

A couple of collaborators from the Photoacoustic Imaging Group at UCL went to the big SPIE Photonics West conference in San Francisco to present some of our work. Now all proceedings have been published in this collection. Big thanks to Martina Fonseca for writing “Three-dimensional photoacoustic imaging and inversion for accurate quantification of chromophore distributions”, Rob Ellwood for writing “Photoacoustic imaging with a multi-view Fabry-Pérot scanner”, and Nam Huynh for writing “Sub-sampled Fabry-Perot photoacoustic scanner for fast 3D imaging”!

New paper on risk estimators (GSURE et al.)

We had an interesting collaboration with a group at the Institute of Statistics, Ruhr-Universität Bochum about the statistical properties of a certain class of parameter choice rules that became popular in ill-posed inverse problems recently: Methods based on Stein’s unbiased risk estimator (SURE) choose a regularization parameter by minimizing an estimate of a risk function that cannot be minimized directly as it depends on the true, unknown solution. By a mix of theoretical and numerical studies, we could show that the quality of such estimators can severely deteriorate if the ill-posedness of the problem increases, which is unfortunately a natural asymptotic limit in many inverse problems scenarios. The full results can be found in a paper we recently uploaded to arXiv. Big thanks to all the co-authors! [Update: It has been published in Inverse Problems & Imaging .]

All new papers accepted

The papers that the last few posts announced are all accepted and now go through the different stages of a publication. The most recent versions are linked on my google scholar page. Again a big thanks to all the co-authors and reviewers!