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Electroencephalography (EEG) and Magnetoencephalography (MEG)

Aim: Reconstruction of brain activity by non-invasive measurement of induced
electromagnetic fields (bioelectromagnetism) outside of the skull.

source: Wikimedia Commons source: Wikimedia Commons

Felix Lucka
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Applications of EEG/MEG

» Diagnostic tool in neurology, e.g., Epilepsy.

» Scientific applications:
» Examination tool in several fields
neuroscience.
» Validation of therapeutic approaches in
clinical neuroscience.
» Examination tool for neurophysiology.

Felix Lucka
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Neural Generators

Signals derive from the net effect of ionic currents flowing in the dendrites of
neurons during correlated synaptic transmission.

EEG: Extracellular volume currents produced by postsynaptic potentials.
— strongly dependent on tissue's conductivity.

MEG: Intracellular currents associated with these postsynaptic potentials.
— less dependent on tissue's conductivity.

source: Wikimedia Commons

Felix Lucka
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Mathematical Forward Modeling & Simulation

Felix Lucka
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Basics of Mathematical Modeling

The interaction of electromagnetic fields with current and charge densities is
described by Maxwell's equations.

Let j(7) : R* — R® be a current density and p(7) : R — R be a charge density.
o(F) : R* = R is a conductivity distribution (isotropic).

The induced electric field E(F) : R® — R® and the induced magnetic field

B(7) : R® — R? are given by:

Maxwell’s equations (differential, microscopic form):

div(E) = p/o rot(E) = —0,B

div(B) =0 rot(B) = o - (j — 00:E)

...4 coupled, (non-linear) time-dependent PDEs! source: Wikimedia Commons

Felix Lucka
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Basics of Mathematical Modeling
|

Maxwell's equations (differential, microscopic form):
div(E) = p/o rot(E) = —0,B
div(B) =0 rot(B) = pio - (j — 00E)

source: Wikimedia Commons

Interpretation:

Under certain conditions, a vector field A is uniquely defined by its
source-density div(A) and its circulation-density rot(A).

Maxwell's equations describe the origin of these two components for E and B.

Felix Lucka
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Basics of Mathematical Modeling
|

Maxwell's equations (differential, microscopic form):
div(E) = p/o rot(E) = —0,B
div(B) =0 rot(B) = pio - (j — 00E)

source: Wikimedia Commons

Interpretation:

div(E) = p/o is a differential formulation of Coulomb’s law, which describes
the force between charges.

In casual terms:

“The sources of the electric flux density (D = oE) are the free charges.”

Felix Lucka
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Basics of Mathematical Modeling

e —
Maxwell's equations (differential, microscopic form):

div(E) = p/o rot(E) = —0,B
div(B) =0 rot(B) = pio - (j — 00E)

source: Wikimedia Commons

Interpretation:
rot(E) = —9;B is a differential formulation of Faraday’s law of induction .

In casual terms:

“The temporal change of a magnetic field induces an electric curl field,
oriented opposite to its cause. (Lenz's law).”

Felix Lucka
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Basics of Mathematical Modeling
|

Maxwell's equations (differential, microscopic form):
div(E) = p/o rot(E) = —0,B
div(B) =0 rot(B) = pio - (j — 00E)

source: Wikimedia Commons

Interpretation:
div(B) = 0 states, that the magnetic field is source free.

In casual terms:

“There are no magnetic monopoles”
or
“The magnetic field is a pure curl field”

Felix Lucka
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Basics of Mathematical Modeling
|

Maxwell's equations (differential, microscopic form):
div(E) = p/o rot(E) = —0,B
div(B) =0 rot(B) = pio - (j — 00E)

source: Wikimedia Commons

Interpretation:

rot(B) = o ] is a differential formulation of Ampére’'s circuital law.
In casual terms:

“The motion of electric charges (i.e., current) induces a magnetic curl field
(orientation by right-hand rule)”

The addition of Maxwell's displacement current (—po - o - O:E) is less intuitive

Felix Lucka
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Basics of Mathematical Modeling

Maxwell's equations (differential, microscopic form):

div(E) = p/o rot(E) = —0,B
div(B) = 0 rot(B) = po - (j — 00:E)

Still 4 coupled, (non-linear) time-dependent PDEs!

Simplifying assumptions:
> Linearity: Body ~ passive conductor
» Quasistatic approximation: Temporal changes << spatial propagation
velocity; Tissue is time-independent and has no inductance.
» Charge-free: No macroscopic charge aggregation.
> Primary- and volume currents: Separate current into a primary and resulting

volume current.

Felix Lucka



Basics of Mathematical Modeling

Forward/Direct Problem of EEG/MEG

Let o(7) be the conductivity and j”/(F) a primary current density in Q C R® .
The electric potential u on 0L is given by::

V- (oVu)=V-j in Q
n-(cVu)=0 on 9Q (no-penetration condition)

/ u-ds=0 (fix ground potential)
a0

The magnetic field B can be conducted by (Biot-Savart):

- -/
— Ho prip =1 -/ —1 r—r -1 = 3\ A
B(F) = &= {pr —o(F -Vur}xﬁdr for ¥ € R°\Q
0= 42 [ {7 = o) Vulr)} x T \
Solving the forward problem necessitates concerning 3 things:
> A source-model for jp’i: How can we model the macroscopic current-flows?
> A volume-conductor-model of o(F): How can we model the dielectric
properties of the different tissues?

» A numerical method for solving the PDE w.r.t. to source and volume
conductor model; mostly FEM or BEM approaches.



Basics of Mathematical Modeling

Common source model: Equivalent current dipoles, j77(x) = >0 Mid(x — x;)

SOUFCE+

sink

cell body
L

Equivalent Current Dipole (Primary current) (~50 nAm)

parameters:
position X,
moment : M

Size of Macroscopic Neural Activity

~30 mm? = 5.5x5.5 mm?

Problem for certain numerical methods:
5(r) € H3/275(Q) Ve >0 and D§(r) € H¥?71ol=5(Q) ve > 0.
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Forward Computation Methods

Sphere: Under the assumption of modeling the head by a multi-layer
sphere model, a (quasi-)analytic solution exists.

BEM: Assuming a nested shell topography boundary element methods
can be used, demanding the discretization of the compartment
boundaries.

FEM: Finite element methods are based upon a discretization of the
whole volume conductor.

12

Felix Lucka
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Why FEM?

» Possibility to incorporate nearly arbitrary complex geometries and arbitrary
number of compartments:

> CSF, gray/white matter, cerebellum, brain steam, muscles, dura mater,
blood vessels;

> Realistic skull modeling: Skull holes, three-layeredness.

> Anatomical anomalies from surgeries / brain damages.

» Modeling of invasive recording devices (ECoG, depth-electrodes)

> Inclusion of anisotropic conductivities, e.g., white matter anisotropy

13

Felix Lucka



Realistic, individual head modeling for bioelectromagnetic applications

=

geometry
adapted cubic
meshing

surface
extraction

tetrahedral
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brain o v
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I S realistic,
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“' individual,
. | conductivity - anisotropic
- fitting - FEM head model




Part 1: MRI Processing, Structural Scans

RGB composite of T1 and T2 MRI scan




Part 1: MRI Processing, Segmentation




Part 1: MRI Processing, Diffusion Weighted MRI

DW-MRI allows the mapping of diffusion processes of
molecules in biological tissues, in vivo.

Clinical application: Localization of white matter lesions in
stroke patients, surgical planning.

Key imaging modality to assess connectivity via tractography .

We use it to compute conductivity tensors.
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Part 1: MRI Processing, Diffusion Weighted MRI
Fast Echo-Planar Imaging (EPI)

18
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Part 1: MRI Processing, Diffusion Weighted MRI

New, non-linear, variational registration approach (DA and PhD by Lars
Ruthotto):

o

\ ’ i l.r“".u
L S

““‘l

19
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Part 1: MRI Processing, Diffusion Weighted MRI

20
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Part 1: MRI Processing, Diffusion Weighted MRI




Part 1: MRI

Processing, Diffusion Weighted MRI
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Part 1: MRI Processing, Diffusion Weighted MRI




Part 1: MRI Processing, Diffusion Weighted MRI
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Part 1: MRI Processing, Diffusion Weighted MRI
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Part 1: MRI Processing, Diffusion Weighted MRI

Effects of white matter anisotropy on thalamic source:

0.02 Alm?
0.005 Aim?

0.0018 A/m?
0.0015 A/m?
0.0012 Alm?
0.001 A/m?

0.0008 A/m*
0.0006 A/m*
0.0004 A/m*
0.0002 A/m*

0 Am?

26
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Realistic, individual head modeling for bioelectromagnetic applications
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Part 2: FEM Meshing




Part 2: FEM Meshing




Part 2: FEM Meshing
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: FEM Meshing

Part 2
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The Inverse Problem: Concepts and Methods

32
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Basics of the Inverse Problem

Inverse Problem of EEG/MEG Source Reconstruction

Given

> measurements b of the electric potential u and/or of the normal-component
of the magnetic field (n, B) on the surface 99;

> a volume-conductor-model of o(F);
> a source model J C D'(Q,R?);

estimate the primary current fp’i € J (source) that is consistent with b and the
neurophysiological constrains of brain activity.

Solving the inverse problem (source reconstruction) necessitates concerning 3
things:
» Data preprocessing: How can we clean/filter the data from external sources
(artifacts), noise, unwanted brain activity components?
» A-prior modeling: How much and which assumptions on brain activity do
we need to incorporate and how do we model them to stabilize the inverse
problem?

> Implementation: How do we solve the inverse problem practically?



-
— — \\ESTFALISCHE

WILHELMS-UNIVERSITAT
MOUNSTER 34

Characteristic Features of Inverse Problems

Hadamard's definition of well-posed problems:
1. A solution exists.
2. The solution is unique.

3. The solution depends continuously on the data.

If one of the conditions does not hold, the problem
is called ill-posed.

Inverse problems are typically ill-posed.

Jacques Salomon Hadamard
(1865-1963)

Felix Lucka
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What About the Inverse Problem of EEG/MEG?

> (Presumably) under-determined

> Severely ill-conditioned

> Low SNRs

Felix Lucka
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What About the Inverse Problem of EEG/MEG?

Summary: The problem is severely ill-posed.

Measurements alone are insufficient and unsuitable to determine solution.

— Incorporation of a-priori information about the solution in an explicit or
implicit way:
» Knowledge about general/specific brain activity?
> Integration of multimodal information (fMRI, DW-MRI, PET)?
> Mathematical formulation?
» Computational implementation?

= Variety of inverse methods for EEG/MEG (“curse of interdisciplinary")

Felix Lucka



Different Approaches to the Inverse Problem

Inverse Methods
for
EEG/MEG



Different Approaches to the Inverse Problem

Inverse Methods

Focal current models/

for
EEG/MEG Dipole fitting

1
[ Distributed current models J
C

urrent density reconstruction (CDR)

Focal current modeling: Reconstruction using a small number of dipoles with
arbitrary locations and orientations.
Unknown number of sources/spatial extent? = not suitable

Distributed current modeling: Discretization of underlying current field using a
large number of focal elementary sources with fixed locations and orientations.



Different Approaches to the Inverse Problem

Inverse Methods

for
Focal current models/
EEG/MEG Dipole fitting

Distributed current models
Current density reconstruction (CDR)

Focal current modeling: Reconstruction using a small number of dipoles with
arbitrary locations and orientations.
Unknown number of sources/spatial extent? = not suitable

Distributed current modeling: Discretization of underlying current field using a
large number of focal elementary sources with fixed locations and orientations.



Different Approaches to the Inverse Problem

Inverse Methods

for
Focal current models/
EEG/MEG Dipole fitting

Distributed current models X X
Current density reconstruction (CDR) Local, spatial scanning methods/ }

l beamforming

[ Global, source-space based methods }

Local, spatial scanning methods/beamforming: Repeatedly optimize the estimate
at a single location or a small region while suppressing crosstalk from other areas.

Global, source-space based methods: Incorporate a-priori information on the
global properties of the solution.



Different Approaches to the Inverse Problem

Inverse Methods

for
Focal current models/
EEG/MEG Dipole fitting

urrent density reconstruction (CDR) Local, spatial scanning methods/

beamforming ’

[ Distributed current models a
C

[ Global, source-space based methods }

Local, spatial scanning methods/beamforming: Repeatedly optimize the estimate
at a single location or a small region while suppressing crosstalk from other areas.

Global, source-space based methods: Incorporate a-priori information on the
global properties of the solution.



Different Approaches to the Inverse Problem

Inverse Methods

for
Focal current models/
EEG/ MEG Dipole fitting

urrent density reconstruction (CDR) Local, spatial scanning methods/

[ Distributed current models
C
beamforming

[ Global, source-space based methods
Regularization formulation }

—

{ Bayesian formulation J

(Variational) regularization: Incorporate a-priori information through a
variational framework (Tikhonov regularization).

Bayesian inference: Incorporate a-priori information through a statistical
framework.



Different Approaches to the Inverse Problem

Inverse Methods

for
Focal current models/
EEG/ MEG Dipole fitting
Distributed current models i K a
Current density reconstruction (CDR) Local, spatial scanning methods/
beamforming ’

[ Global, source-space based methods
Regularization formulation

{ Bayesian formulation J

(Variational) regularization: Incorporate a-priori information through a
variational framework (Tikhonov regularization).

Bayesian inference: Incorporate a-priori information through a statistical
framework.



Different Approaches to the Inverse Problem

Inverse Methods

for
Focal current models/
EEG/MEG Dipole fitting

[ Distributed current models
C

urrent density reconstruction (CDR) Local, spatial scanning methods/ a
beamforming ’
[ Global, source-space based methods ’
Regularization formulation

[ Bayesian formulation ]1@

[ Hierarchical Bayesian modeling ]

Hierarchical /Empirical Bayesian modeling: More later...



Current Density Reconstruction
Discretization of an underlying continuous current distribution by large number
of current dipoles with fixed location and orientation.
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Current Density Reconstruction

Lead-field matrix concept:

» L € R™"; columns represent measurements at m sensors caused by the n
single current dipoles.

» Linear combination of the dipoles is represented by source vector s € R".

> Measurements b € R"™ caused by s can then be calculated via:

b=1Ls

39

Felix Lucka
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Current Density Reconstruction

Lead-field matrix concept:

» L € R™"; columns represent measurements at m sensors caused by the n
single current dipoles.

» Linear combination of the dipoles is represented by source vector s € R".

> Measurements b € R"™ caused by s can then be calculated via:

b=1Ls

Infer s from b? Apparently ill-posed problem:
» n> m. = b= Ls is under-determined.
» L inherits the bad condition of the continuous problem.
» Noise & ~ N (0, 0°1d) is added to signal.

39

Felix Lucka
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Variational / Tikhonov Regularization

> Original ill-posed problem is approximated by a well-posed problem.

> Degree of approximation is controlled by means of a regularization
parameter A, such that A — 0 corresponds to the solution given by a
generalized inverse of L.

» Can be formulated as a minimization problem

sy = argmin {D(s) + A-P(s)};  D(s) = b Ls|p,
seR"
D(s): Data functional, controls the deviation from measurements.
‘P(s): Penalty functional, renders the problem well-posed, promotes
solutions with certain qualities by penalizing all others.

Felix Lucka
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Variational / Tikhonov Regularization

Theoretical perception of the inverse problem:

Find a generalized inverse to the forward operator with certain additional
properties.

» Appropriate, and most often used point of view for the analysis of methods
based on these approaches is functional analysis.

» Noise = choice of the data functional; seen as implicit obstacle;
stochastic nature of the process (and thus of the solution given by the
method) is more or less neglected.

» The penalization of unwanted features is a form of an implicit modeling; no
reference to an underlying explicit model.

» High dimension of the source space = minimization can involve
sophisticated optimization techniques.

Felix Lucka
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Variational/Tikhonov Regularization, Examples

Classical minimum norm estimate:
P(s)=|sl3 — s\ =argmin ||b— Ls|3+ \|s||3

Weighted minimum norm estimate:
P(s) = [[Ws[3  — sy =argmin ||b— Ls||3 + A Ws|)3
Possible weightings: Depth weighting, spatial smoothness, fMRI/SPEC/PET.

Minimum current estimate. Let s denote the amplitude of the current vector at
position i:
P(s)=lls"li — s\ =argmin ||b—Ls|3+ Alls*|x

Weighted minimum current estimates:

P(s) = |Ws*|1  — s\ =argmin ||b— Ls||3 + \||Ws*|1
Possible weightings: Total Variation (TV, W = V), depth weighting,
fMRI/SPEC/PET

Felix Lucka
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Bayesian Inference

Back to

b=Ls+¢&

» n> m. =—> b= Ls is under-determined.
» L inherits the bad condition of the continuous problem.

> Noise £ is added to signal.

43

Felix Lucka
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Bayesian Inference

Back to

b=Ls+¢&

» n> m. =—> b= Ls is under-determined.
» L inherits the bad condition of the continuous problem.

> Noise £ is added to signal.
High uncertainty and under-determinateness of a problem?

= Account for them explicitly by formulating the problem in a
statistical framework

43

Felix Lucka
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise.
» B=Ls+&, &~ N(0,0°1d) (b is now random variable B)

» Compute probability density of B given s (likelihood):

1
Piike(b|s) ox exp <—7||b - LSH%)

202

Felix Lucka
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
Piike (b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest. — Bayesian modeling:

> s is considered to be a random variable itself (s — S).
> Its distribution pprior(s) reflects a-priori assumptions/knowledge.

» Task of the prior: Render the estimation problem well-posed.

Felix Lucka
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
Piike (b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior(s)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule:

_ Pie(bl5)Pprior(5)
Ppost(s|b) = o(b)

» Conditional distribution of S given B is called posterior distribution.
> Represents all information on S given the realization of B = b.

» Complete solution to the inverse problem in Bayesian Inference

Felix Lucka
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
Piike(b]s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior(S)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule: ppost(s|b)

4. Exploit a-posteriori information by inferring point estimates:
1. Maximum a-posteriori-estimate (MAP): Suap 1= argmaXx,cgn Ppost(s|b).
Practically: High-dimensional optimization problem.
2. Conditional mean-estimate (CM): 5cu := E [s|b] =[5, S Ppost(s|b)ds.
Practically: High-dimensional integration problem.

Felix Lucka
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Strategy of Bayesian Inference, Connections to Variational Regularization

Consider
A
Dprior(5) ox exp (—ﬁp(s)) ,
then
proe(s18) o exp (55116~ L3l — 357(5))
and

~ 1 A
Swap = argmax {exp (—ﬁHb —Ls|3 - ﬁp(s)>}

seRM

= argmin {||b —Ls|3+ /\73(5)}
seRn

The same applies for CM estimates in a less explicit way...

Felix Lucka
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Bayesian Inference strategies

But there is more to Bayesian inference:

| 4

>

And more complex models, i.e., empirical /hierarchical Bayesian models.

Confidence intervals estimates
Conditional covariance estimates
Histogram estimates
Marginalization

Model selection or averaging

Experiment design

49
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

50

Felix Lucka



-
e \YESTRALISCHE

WILHELMS-UNIVERSITAT
MOUNSTER 50

Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the
prior used for the inference based on
this data!

Felix Lucka
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the
prior used for the inference based on
this data!

Sds like...

50
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Empirical Bayesian Inference

Sounds like...
Problem: Brain activity is too complex (or our Wi
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the
prior used for the inference based on
this data!

...but can be formulated into a consistent, statistical reasoning by adding a new
dimension of inference: Hyperparameters and hyperpriors.

Top-down construction scheme — Hierarchical Bayesian modeling (HBM).

50
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Hierarchical Bayesian Modeling (HBM)

Overview:
» Current trend in all areas of Bayesian inference.
> Flexible framework for the construction of complex models.
> Adds an adaptive, data-driven element into the estimation.
> Automated reduction of complex models.
» Different levels for the embedding of qualitative or quantitative a-priori
information.
» Embeds several heuristic approaches into sound mathematical framework.
» Comprises many former EEG/MEG methods.
» Offers various new ways of inference: Full-MAP, Full-CM, v-MAP, S-MAP,

VB

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Wanted: A prior promoting focal source activity.

First try:

» Take Gaussian prior with zero mean and covariance ¥s =~ -Id, >0
(Minimum norm estimation).

» Compute MAP or CM estimate (equal)!

. 1 2 1 2
Suap - = argmax sexp [ —=——=||b—Ls|[5 — =—]|s
s = argmax {exp (— 50 16— Ll - 1sl3) |

= argmin {||b — LSH% + 072||5H§}
seR"

Felix Lucka



Example: Hierarchical Bayesian Modeling of Focal Activity

First try: NOT a focal reconstruction.
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Example: Hierarchical Bayesian Modeling of Focal Activity

T
’r!!;}',',g:;;r, 2
g
S rragazazz;
P i
'W:
-

What went wrong?

» Gaussian variables = characteristic scale given by variance.
(not scale invariant)

> All sources have variance v = Similar amplitudes are likely.

» —> Focal activity is very unlikely.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:

> Let sources at single locations i have different variances ~;.

> Let the data determine 7 = New level of inference!

» ~v = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:

> Let sources at single locations i have different variances ~;.

> Let the data determine 7 = New level of inference!

» ~v = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.
» Encode focality assumption into hyperprior:
» Focality: Nearby sources should a-priori not be mutually dependent.

> Focality: Most sources silent, few with large amplitude;

> No location preference for activity should be given a priori.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:
> Let sources at single locations i have different variances ~;.
> Let the data determine 7 = New level of inference!
» ~v = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.
» Encode focality assumption into hyperprior:
> ~; should be stochastically independent.

> Focality: Most sources silent, few with large amplitude;

> No location preference for activity should be given a priori.
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:
> Let sources at single locations i have different variances ~;.
> Let the data determine 7 = New level of inference!

» ~v = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.

» Encode focality assumption into hyperprior:

> ~; should be stochastically independent.

> Sparsity inducing hyperprior, e.g., inverse gamma distribution.

> No location preference for activity should be given a priori.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

Idea:
> Let sources at single locations i have different variances ~;.
> Let the data determine 7 = New level of inference!

» ~ = (7i)i are called hyperparameters.
> Bayesian inference: <y are random variables as well.

> Their prior distribution ppyper () is called hyperprior.

» Encode focality assumption into hyperprior:

> ~; should be stochastically independent.

> Sparsity inducing hyperprior, e.g., inverse gamma distribution.
> 7 should be equally distributed.

Felix Lucka
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Example: Hierarchical Bayesian Modeling of Focal Activity

In formulas:

Do (s17) ~ N(0,5o(%)), where () = diag (- 1ds, i = 1,...., k)
koo K K e 3

thPéf(’Y) = Hp;ryper(’yf) = thyper(%') = H @ 'Yi_a_l exp (_7)
i=1 i=1

i=1 i

a > 0 and 3 > 0 determine shape and scale, '(x) denotes the Gamma function.

Joint prior:  ppr(5,Y) = Pprior (1) Phyper()

Implicit prior:  ppr(s) = / Perior (S1Y) Phyper () dy

= /N(O, >5()) phyper(¥)dy  ~> “Gaussian scale mixture”

56
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Example: Hierarchical Bayesian Modeling of Focal Activity
Posterior, general:

) Porior(57Y) Phyper(Y)
) Pprior(S)

Ppost (S, Y| b) o piike(bls
Comparison:  Ppost(S|b) o piike(b|s
Posterior, concrete:

Ppost (s, 7y|b) o

k /1 2
1 *HSI'*H +B
exp (—M”b—l-ﬂg— E (2%4'( +3) Inyi

i=1
Analytical advantages...

> Energy is quadratic with respect to s

» Factorizes over 7;'s
and disadvantages...

> Energy is non-convex w.r.t. (s,~) (posterior is multimodal)

Felix Lucka



Example: Hierarchical Bayesian Modeling of Focal Activity

Full-CM estimate computed via blocked Gibbs MCMC integration, see Calvetti
et al., 2009.
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Static vs. Dynamic Inverse Methods

Up to now we only looked at the static inverse problem...but:
» EEG and MEG offer an excellent temporal resolution.
» The temporal characteristics of brain dynamics attract growing attention.

> Incorporating the complete temporal data could stabilize the ill-posed
inverse problem.

Approaches:

> Single-pass strategies: Extract information from one domain to enhance the
reconstruction in the other domain.

» State-space approaches: lterate between space and time to balance both
sources of information.

» Multi-pass strategies: Incorporate information from both domains
simultaneously (spatio-temporal inversion). Computationally expensive.

Felix Lucka






