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Bayesian Inference for Inverse Problems

Linear ill-posed inverse problem with additive Gaussian noise:

f = Au + ε

plike(f |u) ∝
exp

(
− 1

2‖f − A u‖2
2

)
pprior (u) ∝
exp

(
−λ ‖DTu‖2

2

)
ppost(u|f ) ∝
exp

(
− 1

2‖f − A u‖2
2 − λ ‖DTu‖2

2

)

Probabilistic representation allows for a rigorous quantification of the
solution’s uncertainties.
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and variable selection:

ûλ = argmin
u

{
1
2‖f − A u‖2

2 + λ‖DTu‖1

}
(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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Bayesian Inference with `1 Priors

ppost(u|f ) ∝ exp
(
− 1

2‖f − A u‖2
2 − λ ‖DTu‖1

)
Aims: Bayesian inversion in high dimensions (n→∞):

MAP vs. CM, characterization of posterior structure.

Priors: Simple `1, total variation (TV), Besov space priors.

Starting points:

Lassas, Siltanen, 2004. Can one use total variation prior for
edge-preserving Bayesian inversion?, Inverse Problems, 20.

Lassas, Saksman, Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors, Inverse Problems
and Imaging, 3(1).

Kolehmainen, Lassas, Niinimäki, Siltanen, 2012.
Sparsity-promoting Bayesian inversion, Inverse Problems,
28(2).
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Efficient MCMC Techniques for `1 Priors

Task: Monte Carlo integration by samples from

ppost(u|f ) ∝ exp
(
− 1

2‖f − A u‖2
2 − λ ‖DTu‖1

)
Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or λ.

Contributions:

I Development of explicit single component Gibbs sampler.

I Tedious implementation for different scenarios.

I Still efficient in high dimensions (n > 106).

I Detailed evaluation and comparison to MH.

L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors, Inverse Problems, 28(12):125012.



Efficient MCMC Techniques for `1 Priors

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d) MH-Iso, 16h

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h (h) SC Gibbs, 16h

Deconvolution, simple `1 prior, n = 513× 513 = 263 169.
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Recent Generalization: Slice-Within-Gibbs Sampling

pprior (u) ∝ exp
(
−λ‖DTu‖1

)
Limitations:

I D must be diagonalizable (synthesis priors):

I `qp-prior: exp
(
−λ‖DTu‖qp

)
? TV in 2D/3D?

I Non-negativity or other hard-constraints?

Contributions:

I Replace explicit by generalized slice sampling.

I Implementation & evaluation for most common priors.

Neal, 2003. Slice Sampling, Annals of Statistics 31(3).

L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion, submitted, arXiv:1602.08595.
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Image Deblurring Example in 2D

(a) Unknown function ũ (b) Data f

Deconvolution, simple `1 prior, n = 1023× 1023 = 1 046 529.
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Image Deblurring Example in 2D

(a) Unknown function ũ (b) CM estimate by our Gibbs sampler

Deconvolution, simple `1 prior, n = 1023× 1023 = 1 046 529.
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Image Deblurring Example in 2D

(a) Unknown function ũ (b) MAP estimate by ADMM

Deconvolution, simple `1 prior, n = 1023× 1023 = 1 046 529.
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Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004)

”Can one use total variation prior for edge-preserving Bayesian inversion?”

I For λn = const. and n −→∞ the TV prior diverges.
I CM diverges.
I MAP converges to edge-preserving limit.

0 1/3 2/3 1

0

1

 

 

u
†,∞

n = 63

n = 255

n = 1 023

n = 4 095

n = 16 383

n = 65 535

(a) CM by our Gibbs Sampler
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(b) MAP by ADMM



Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004)

”Can one use total variation prior for edge-preserving Bayesian inversion?”

I For λn = const. and n −→∞ the TV prior diverges.
I CM diverges.
I MAP converges to edge-preserving limit.

1/3 2/3

1

 

 

u
†,∞

n = 63

n = 255

n = 1 023

n = 4 095

n = 16 383

n = 65 535

(a) Zoom into CM estimates

1/3 2/3

1

 

 

u†,∞

ûa
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Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004)

”Can one use total variation prior for edge-preserving Bayesian inversion?”
I For λn ∝

√
n + 1 and n −→∞ the TV prior converges to a

smoothness prior.
I CM converges to smooth limit.
I MAP converges to constant.
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TV-p Priors as an Alternative?

ppost(u) ∝ exp
(
− 1

2‖f − A u‖2
Σ−1

ε
− λ ‖DTu‖pp

)
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(a) CM (Gibbs-MCMC)
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(b) MAP (Simulated Annealing)
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

I CT using only 45 projection angles and 500 measurement pixel.

real solution data f colormap
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, λ = 500 CM, n = 642, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, λ = 500 CM, n = 1282, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, λ = 500 CM, n = 2562, λ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I .
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Examination of Besov Space Priors by MCMC

An `1-type, wavelet-based prior:

pprior (u) ∝ exp
(
−λ‖WV Tu‖1

)
motivated by:

M. Lassas, E. Saksman, S. Siltanen, 2009.
Discretization invariant Bayesian inversion and
Besov space priors, Inverse Probl Imaging, 3(1).

V. Kolehmainen, M. Lassas, K. Niinimäki, S.
Siltanen, 2012. Sparsity-promoting Bayesian
inversion, Inverse Probl, 28(2).

K. Hämäläinen, A. Kallonen, V.
Kolehmainen, M. Lassas, K. Niinimäki, S.
Siltanen, 2013. Sparse Tomography, SIAM J
Sci Comput, 35(3).
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Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 64×64 = 4.096

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 128×128 = 16.384

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 256×256 = 65.536

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 512×512 = 262.144

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors

Reconstructions for λ = 2e4, n = 1024×1024 = 1.048.576

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)

Felix Lucka, f.lucka@ucl.ac.uk - High-Dimensional Bayesian Inversion with Priors Far from Gaussians 21



Application to Experimental Data: Walnut-CT

I Cooperation with Samuli Siltanen, Esa Niemi et al.

I Implementation of MCMC methods for Fanbeam-CT.

I Besov and TV prior; non-negativity constraints.

I Stochastic noise modeling.

I Bayesian perspective on limited angle CT.

Use the data set for your own work:
http://www.fips.fi/dataset.php (documentation: arXiv:1502.04064)



Walnut-CT with TV Prior: Full vs. Limited Angle

(a) MAP, full (b) CM, full (c) CStd, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



New Light on an Old Debate: MAP vs. CM Estimates

ûMAP := argmax
u∈Rn

{ ppost(u|f )} OR ûCM :=

∫
u ppost(u|f )du

Observations...

I Gaussian priors: MAP = CM. Funny coincidence?

I For reasonable non-Gaussian priors, MAP are sparser,
sharper, look and perform better...

I lf the CM looks good, it looks like the MAP.

I UQ wrt the CM (= variance) might not be interesting.

I Gribonval, Marchart, Louchet and Moisan, 2011-2013:
CM are MAP for different priors.

...are in contradiction with classical Bayes cost formalism
which discriminates MAP (= variational regularization) and
advocates CM.

CM MAP

CM MAP
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The Classical Bayes Cost Argument

I An estimator is a random variable, as it relies on f and u.

I How does it perform on average? Which estimator is ”best”?

I  Define a cost function Ψ(u, v).

I Bayes cost is the expected cost:

BC (û) =

∫∫
Ψ(u, û(f )) plike(f |u) df pprior (u) du

I Bayes estimator ûBC for given Ψ minimizes Bayes cost. Turns out:

ûBC (f ) = argmin
û

{∫
Ψ(u, û(f )) ppost(u|f ) du

}
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The Classical Bayes Cost Argument

I CM is Bayes estimator for Ψ(u, û) = ‖u − û‖2
2 (MSE).

I Also the minimum variance estimator.

I The mean value is the intuitive ”average”, the ”center of mass”.

I MAP is asymptotic Bayes estimator of

Ψε(u, û) =

{
0, if ‖u − û‖∞ 6 ε
1 otherwise,

for ε→ 0 (uniform cost). =⇒ Not a proper Bayes estimator.

MAP and CM seem fundamentally different =⇒ one should decide!

I “A real Bayesian would not use the MAP estimate”

I People feel ”ashamed” when they have to compute MAP estimates
(even when their results are good).
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A False Conclusion

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

”MAP estimate can be seen as an asymptotic Bayes estimator of

Ψε(u, û) =

{
0, if ‖u − û‖∞ < ε

1 otherwise,

for ε→ 0.

???

=⇒

???

It is not a proper Bayes estimator.”

”MAP estimator is asymptotic Bayes estimator for some degenerate Ψ”
;“MAP can’t be Bayes estimator for some proper Ψ” !!!!

We need new cost functions!
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Bregman distances

For a proper, convex functional J : Rn −→ R ∪ {∞}, the Bregman
distance Dp

J (u, v) between u, v ∈ Rn for a subgradient p ∈ ∂J (v) is
defined as

Dp
J (u, v) = J (u)− J (v)− 〈p, u − v〉, p ∈ ∂J (v)

0

0

J (x)

J (v) + J 0(v)(x� v)

DJ (u, v) = J (u)� J (v)� J 0(v)(u� v)

DJ (u, v)

u v

(g) J (x) = x2

0

J (x)

Dq
J (u, v) =J (u)� J (v)� q(u� v)

with q 2 @J (v)

vuw

Dp
J (u, v)

J (v) + p(x� v)

J (v) + r(x� v)

Dr
J (w, v)

p, r 2 @J (v) = [�1, 1]

(h) J (x) = |x |

Basically, DJ (u, v) measures the difference between J and its
linearization in v at another point u.



Two New Bayes Cost Functions

ppost(u|f ) ∝ exp
(
− 1

2‖f − A u‖2
2 − λJ (u)

)
with J proper, convex (prior is log-concave).

Definition:

(a) ΨLS(u, û) := ‖A(û − u)‖2
2 + β‖L(û − u)‖2

2

(b) ΨBrg(u, û) := ‖A(û − u)‖2
2 + 2λDJ (û, u)

for a regular L, β > 0.

Properties:

I Proper, convex cost functions

I For J (u) = β/λ‖Lu‖2
2 (Gaussian case!) we have λDJ (û, u) =

β‖L(û − u)‖2
2, and ΨLS(u, û) = ΨBrg(u, û)!

Theorems:

(I) The CM estimate is the Bayes estimator for ΨLS(u, û)

(II) The MAP estimate is the Bayes estimator for ΨBrg(u, û)
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Two New Bayes Cost Functions II

ppost(u|f ) ∝ exp
(
− 1

2‖f − A u‖2
2 − λJ (u)

)
Definition:

(a) ΨLS(u, û) := ‖A(û − u)‖2
2 + β‖L(û − u)‖2

2

(b) ΨBrg(u, û) := ‖A(û − u)‖2
2 + 2λDJ (û, u)

for a regular L, β > 0.
Theorems:

(I) The CM estimate is the Bayes estimator for ΨLS(u, û)

(II) The MAP estimate is the Bayes estimator for ΨBrg(u, û)

Non-Gaussian case:
I dom(J ) usually defines a (subset of a) Banach space for n→∞.
I In such a space: No natural Hilbert space norm as limit of ‖Lu‖2.
I Hilbert space norm not meaningful measure, e.g. for functions in BV.
I Only choice: L = 0 =⇒ ΨLS only measures in output space, bad for

ill-posed inverse problems!
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Average Optimality of CM and MAP-Centered Posterior

Average optimality condition for the CM estimate:

A∗(AûCM − f ) + λp̂CM = 0, p̂CM =

∫
J ′(u)ppost(u|f )du

A∗(AûMAP − f ) + λp̂MAP = 0, p̂MAP = J ′(ûMAP)

Difference: J ′(E(u|f )[u]) 6= E(u|f )[J ′(u)] (except for Gaussian prior).

“The posterior is well centered around the CM but not around the MAP
estimate.”
=⇒ Use optimality condition to rewrite posterior in terms of ûMAP:

ppost(u|f ) ∝ exp

(
−1

2
‖A(u − ûMAP)‖2

2 − λD p̂MAP

J (u, ûMAP)

)
Posterior energy is sum of two convex functionals both minimized by ûMAP.
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Uncertainty Quantification: Which Measure?

Two new inequalities,

E(u|f ) ‖L(ûCM − u)‖2
2 6 E(u|f ) ‖L(ûMAP − u)‖2

2

E(u|f ) DJ (ûMAP, u) 6 E(u|f ) DJ (ûCM, u)

indicate that the use of anisotropic priors calls for different uncertainty
measures than variance or mean square risks.

References:

M. Burger, F.L., 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes estimators,
Inverse Problems, 30(11):114004.

T. Helin, M. Burger, 2015. Maximum a posteriori probability
estimates in infinite-dimensional Bayesian inverse problems, Inverse
Problems, 31(8):085009.

Felix Lucka, f.lucka@ucl.ac.uk - High-Dimensional Bayesian Inversion with Priors Far from Gaussians 32



Summary, Conclusions & Outlook

Bayesian Modeling:

I Modeling sparsity with `1 priors can fail: Sometimes, only the MAP
is sparse, nothing else.

I Alternatives include hierarchical Bayesian models and spike-and-slab
priors.

Bayesian Computation:

I Elementary MCMC samplers may perform very differently.

I Contrary to common beliefs sample-based Bayesian inversion in high
dimensions (n > 106) is feasible if tailored samplers are developed.

I Reason for the efficiency of the Gibbs samplers is unclear.
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Summary, Conclusions & Outlook

Bayesian Estimation / Uncertainty Quantification

I MAP estimates are proper Bayes estimators, minimizing a cost
function potentially better suited to asymptotic Banach space
structure.

I But: Everything beyond ”MAP or CM?” is far more interesting and
can really complement variational approaches.

I However: Extracting information from posterior samples is a
non-trivial (future research) topic.

I The anisotropic structure of the priors calls for different uncertainty
measures than variance or mean square risks.

I Bregman distances are interesting tools for Bayesian inversion.
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Thank you for your attention!

L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion. submitted, arXiv:1602.08595

L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Münster.

M. Burger, L., 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

L., 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors.
Inverse Problems, 28(12):125012.
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Efficient MCMC Techniques for `1 Priors
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MH,     λ = 100
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Temporal autocorrelation R∗(t) for 1D TV-deblurring, n = 63.
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Efficient MCMC Techniques for `1 Priors)
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MH−Iso,     n = 127,  λ = 280
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Temporal autocorrelation R∗(t) for 1D TV-deblurring.
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