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Bayesian Inference for Inverse Problems

Linear ill-posed inverse problem with additive Gaussian noise:
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Probabilistic representation allows for a rigorous quantification of the
solution’s uncertainties.
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Bayesian Inference for Inverse Problems &

Linear ill-posed inverse problem with additive Gaussian noise:
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Probabilistic representation allows for a rigorous quantification of the
solution’s uncertainties.



Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and variable selection:

oy =argmin{3f —Aul3+X|D7ull1}
u

(e.g. total variation, wavelet shrinkage, LASSO,...)
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and variable selection:

oy =argmin{3f —Aul3+X|D7ull1}
u

(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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Bayesian Inference with ¢; Priors

Ppost(u]f) oc exp (=3 [If — Aull3 = XD u1)

Aims: Bayesian inversion in high dimensions (n — c0):
MAP vs. CM, characterization of posterior structure.

Priors: Simple ¢1, total variation (TV), Besov space priors.

Starting points:

@ Lassas, Siltanen, 2004. Can one use total variation prior for
edge-preserving Bayesian inversion?, Inverse Problems, 20.

@ Lassas, Saksman, Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors, Inverse Problems
and Imaging, 3(1).

@ Kolehmainen, Lassas, Niinimaki, Siltanen, 2012.
Sparsity-promoting Bayesian inversion, Inverse Problems,
28(2).




Efficient MCMC Techniques for ¢; Priors

Task: Monte Carlo integration by samples from

ppost(u[f) oc exp (=3 [If — Aull3 = X[[D" ul1)

Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or A.

Contributions:
» Development of explicit single component Gibbs sampler.
» Tedious implementation for different scenarios.
» Still efficient in high dimensions (n > 10°).
» Detailed evaluation and comparison to MH.

@ L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
LI-type priors, Inverse Problems, 28(12):125012.

=




Efficient MCMC Techniques for ¢; Priors &

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d)

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h  (h) SC Gibbs, 16h

Deconvolution, simple ¢; prior, n =513 x 513 = 263 169.
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Recent Generalization: Slice-Within-Gibbs Sampling

pprior(u) X exp (_)‘HDTu”l)

Limitations:
» D must be diagonalizable (synthesis priors):
> (9-prior: exp (—A[[DTul|9)? TV in 2D/3D?
» Non-negativity or other hard-constraints?

4 J
=
«-/' -‘

Contributions:
> Replace explicit by generalized slice sampling.
> Implementation & evaluation for most common priors.

@ Neal, 2003. Slice Sampling, Annals of Statistics 31(3).

@ L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion, submitted, arXiv:1602.08595.
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Image Deblurring Example in 2D &

(a) Unknown function & (b) Data f

Deconvolution, simple ¢; prior, n = 1023 x 1023 = 1046 529.

Felix Lucka, f.lucka@ucl.ac.uk - High-Dimensional Bayesian Inversion with Priors Far from Gaussians



Image Deblurring Example in 2D &

(a) Unknown function & (b) CM estimate by our Gibbs sampler

Deconvolution, simple ¢; prior, n = 1023 x 1023 = 1046 529.
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Image Deblurring Example in 2D &

(a) Unknown function & (b) MAP estimate by ADMM

Deconvolution, simple ¢; prior, n = 1023 x 1023 = 1046 529.
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Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004) 4

"Can one use total variation prior for edge-preserving Bayesian inversion?”
» For A\, = const. and n — oo the TV prior diverges.

» CM diverges.
» MAP converges to edge-preserving limit.

uto uho
—n = 63 | it —n = 63 |
—n= 255 —n= 255
n= 1023 n= 1023
n= 4095 n = 4095
n = 16383 n = 16383
—n = 65535 —n = 65535

0 13 213 10 1/3 23 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004) 4

"Can one use total variation prior for edge-preserving Bayesian inversion?”
» For A\, = const. and n — oo the TV prior diverges.

» CM diverges.
» MAP converges to edge-preserving limit.

whoe utoo

—n = 63

213

213 13

(b) MCMC convergence check

(a) Zoom into CM estimates



Discretization Dilemma of the TV prior (Lassas & Siltanen, 2004) 4

"Can one use total variation prior for edge-preserving Bayesian inversion?”
» For A\, x v/n+1 and n — oo the TV prior converges to a
smoothness prior.
» CM converges to smooth limit.
» MAP converges to constant.

A uhee I utoe
—n = 63 —n = 63

—n= 255 —n= 255

n= 1023 n= 1023

n = 4095 n= 4095

n = 16 383 n = 16383

—n = 65535 —n = 65535

0 13 23 10 13 213 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



TV-p Priors as an Alternative?

Ppost(U) o exp (—%Hf —A “”2):;1 - A ||DTu||g)
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(a) CM (Gibbs-MCMC) (b) MAP (Simulated Annealing)
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Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

» CT using only 45 projection angles and 500 measurement pixel.

m 4: |

real solution data f colormap

Felix Lucka, f.lucka@ucl.ac.uk - High-Dimensional Bayesian Inversion with Priors Far from Gaussians 14



Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, A =500 CM, n= 642, A =500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, A = 500 CM, n= 1282, A\ = 500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, A = 500 CM, n = 2562, X\ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I.
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Examination of Besov Space Priors by MCMC &

An /1-type, wavelet-based prior:

pprior(u) X exp (_)‘” WVTu”l) R
motivated by:

ﬁ M. Lassas, E. Saksman, S. Siltanen, 2009.
Discretization invariant Bayesian inversion and -

Besov space priors, Inverse Probl Imaging, 3(1).

@ V. Kolehmainen, M. Lassas, K. Niinimaki, S. i

Siltanen, 2012. Sparsity-promoting Bayesian
inversion, Inverse Probl, 28(2).

IR

[3 K. Haméldinen, A. Kallonen, V.
Kolehmainen, M. Lassas, K. Niinimaki, S.

Siltanen, 2013. Sparse Tomography, SIAM J
Sci Comput, 35(3).
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Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 64x64 = 4.096

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 128x128 = 16.384

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 256x256 = 65.536

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 512x512 = 262.144

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Sparse-Angle-CT with Discretization Invariant Besov Priors 4

Reconstructions for A = 2e4, n = 1024x1024 = 1.048.576

MAP estimate (by ADMM) CM estimate (by our Gibbs sampler)
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Application to Experimental Data: Walnut-CT &

Cooperation with Samuli Siltanen, Esa Niemi et al.

v

v

Implementation of MCMC methods for Fanbeam-CT.

v

Besov and TV prior; non-negativity constraints.

v

Stochastic noise modeling.

v

Bayesian perspective on limited angle CT.

Use the data set for your own work:
http://www.fips.fi/dataset.php (documentation: arXiv:1502.04064)



Walnut-CT with TV Prior: Full vs. Limited Angle &

(a) MAP, full (b) CM, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



New Light on an Old Debate: MAP vs. CM Estimates

ﬁMAP::argrﬂgax{ Ppost(Ulf)}  OR e ::/uppost(u|f) du
ueR"

N
N
Observations... § )

> Gaussian priors: MAP = CM. Funny coincidence?

» For reasonable non-Gaussian priors, MAP are sparser,
sharper, look and perform better...

» If the CM looks good, it looks like the MAP.
» UQ wrt the CM (= variance) might not be interesting.

» Gribonval, Marchart, Louchet and Moisan, 2011-2013:
CM are MAP for different priors.

...are in contradiction with classical Bayes cost formalism
which discriminates MAP (= variational regularization) and

advocates CM. E A
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The Classical Bayes Cost Argument &

» An estimator is a random variable, as it relies on f and u.
» How does it perform on average? Which estimator is "best?
» ~~ Define a cost function ¥(u, v).

> Bayes cost is the expected cost:

BC(0) = / / (u, B(F)) Prse(F1u) AF Poior (1) du

v

Bayes estimator figc for given ¥ minimizes Bayes cost. Turns out:

() = argmin { [ 9(0,(7) ppos () o
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The Classical Bayes Cost Argument &

CM is Bayes estimator for ¥(u, &) = ||u — &3 (MSE).
Also the minimum variance estimator.

The mean value is the intuitive "average”, the "center of mass”.

vV v v v

MAP is asymptotic Bayes estimator of

v, (u, ) = 0, if |lu—10ljeo <€
ST )1 otherwise,

for ¢ = 0 (uniform cost). = Not a proper Bayes estimator.

MAP and CM seem fundamentally different = one should decide!
> “A real Bayesian would not use the MAP estimate”

> People feel "ashamed” when they have to compute MAP estimates
(even when their results are good).
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A False Conclusion

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

"MAP estimate can be seen as an asymptotic Bayes estimator of

0, if Ju—ille<e

U (u, )=
(. 0) 1  otherwise,

for e — 0. - It is not a proper Bayes estimator.”
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A False Conclusion
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0, if Ju—ille<e

U (u, )=
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A False Conclusion

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

"MAP estimate can be seen as an asymptotic Bayes estimator of

0, if Ju—ille<e

U (u, )=
(. 0) 1  otherwise,

for e = 0. 777==-777 It is not a proper Bayes estimator.”

"MAP estimator is asymptotic Bayes estimator for some degenerate ¥”
=+ “MAP can't be Bayes estimator for some proper ¥" I
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A False Conclusion &

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

"MAP estimate can be seen as an asymptotic Bayes estimator of

v, (u,3) 0, if |lu—10|leo<e€
ST 11 otherwise,

for e = 0. 777==-777 It is not a proper Bayes estimator.”

"MAP estimator is asymptotic Bayes estimator for some degenerate ¥”
=+ “MAP can't be Bayes estimator for some proper ¥" I

We need new cost functions!
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Bregman distances

For a proper, convex functional 7 : R” — R U {co}, the Bregman
distance D% (u, v) between u,v € R for a subgradient p € 07 (v) is
defined as

D5 (u,v) = T(u) =T (V) = (pu—v),  pedI(v)

‘ Dy (u,0) = T(w) = T(v) - T'(0)(u - v) DY (u,v) =T (w) — T (v) - alu— )
: : : with ¢ € 97 (v)
L i o
| o DN
D (u,v) 3 | ' 3 T (v) + p(z —v)
e TN P SR B e — 1
T (w) + T (o) (@ — ) DY (u v) ! J(v) +r(z —wv)
I | | - L opredd() =[-1,1]
i CR— [T v
(8) T(x) =x? (h) T(x) = Ix]

Basically, D7 (u, v) measures the difference between 7 and its
linearization in v at another point u.



Two New Bayes Cost Functions &

Ppost (ulf) o exp (=3I f — Aull3 — AT (u))

with J proper, convex (prior is log-concave).
Definition:
(2) Wis(u, &) = [|A(@ — )2 + BIIL(Z — u)[3
(b) Wy (u, 1) := [|A(& — u) |3 +2\D7 (81, u)
for a regular L, 8 > 0.
Properties:
> Proper, convex cost functions
» For J(u) = B/A||Lul|3 (Gaussian case!) we have AD7 (&, u) =
BlIL(a — u)|)3, and Ws(u, ) = Wy, (u, B)!
Theorems:
(I) The CM estimate is the Bayes estimator for ¥s(u, i)
(I) The MAP estimate is the Bayes estimator for ¥, (u, &)
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Two New Bayes Cost Functions Il &

Ppost(u|f) o exp (—% If —Aul3 — )\J(u))

Definition:
(a) Ws(u, 8) = [|AG = )3 + BIL(E — u)]3
(b) Yo (u, ) == [|A(&1 — u) |3 + 2AD (1, u)
for a regular L, 8 > 0.
Theorems:
(I) The CM estimate is the Bayes estimator for ¥s(u, &)
(I) The MAP estimate is the Bayes estimator for W, (u, 0)

Non-Gaussian case:

dom(J) usually defines a (subset of a) Banach space for n — co.

» In such a space: No natural Hilbert space norm as limit of ||Lu||?.

> Hilbert space norm not meaningful measure, e.g. for functions in BV.
»

Only choice: L =0 = Y5 only measures in output space, bad for
ill-posed inverse problems!

v
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Average Optimality of CM and MAP-Centered Posterior

Average optimality condition for the CM estimate:
A (Ao =)+ Mpos =0, b = [ T'(6)preu(ulf
A* (AaMAP - f) + Al’)MAP = 0, ﬁMAP = j/(aMAP)

Difference: J'(Eur)[u]) # Eur)[T’(u)] (except for Gaussian prior).

“The posterior is well centered around the CM but not around the MAP

estimate.”
= Use optimality condition to rewrite posterior in terms of Gyap:

1 . p N
PoosulF) o 50 (1A = )~ ADE (1. ) )
Posterior energy is sum of two convex functionals both minimized by Tyap.
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Uncertainty Quantification: Which Measure?

Two new inequalities,

Euiry | L(8cm — U)”% < Ewr | L( e U)”%
IE:(u\f) DJ(aMAPy U) < IE'(ulf) Dj(acw U)

indicate that the use of anisotropic priors calls for different uncertainty
measures than variance or mean square risks.

References:

@ M. Burger, F.L., 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes estimators,
Inverse Problems, 30(11):114004.

@ T. Helin, M. Burger, 2015. Maximum a posteriori probability

estimates in infinite-dimensional Bayesian inverse problems, Inverse
Problems, 31(8):0850009.
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Summary, Conclusions & Outlook &

Bayesian Modeling:

» Modeling sparsity with ¢; priors can fail: Sometimes, only the MAP
is sparse, nothing else.

» Alternatives include hierarchical Bayesian models and spike-and-slab

priors.

Bayesian Computation:
» Elementary MCMC samplers may perform very differently.

» Contrary to common beliefs sample-based Bayesian inversion in high
dimensions (n > 10°) is feasible if tailored samplers are developed.

> Reason for the efficiency of the Gibbs samplers is unclear.
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Summary, Conclusions & Outlook

Bayesian Estimation / Uncertainty Quantification

>

MAP estimates are proper Bayes estimators, minimizing a cost
function potentially better suited to asymptotic Banach space
structure.

But: Everything beyond "MAP or CM7?" is far more interesting and
can really complement variational approaches.

However: Extracting information from posterior samples is a
non-trivial (future research) topic.

The anisotropic structure of the priors calls for different uncertainty
measures than variance or mean square risks.

Bregman distances are interesting tools for Bayesian inversion.
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@ L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion. submitted, arXiv:1602.08595

@ L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Miinster.

@ M. Burger, L., 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

@ L., 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors.

Inverse Problems, 28(12):125012.
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Thank you for your attention!

@ L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion. submitted, arXiv:1602.08595

@ L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Miinster.

@ M. Burger, L., 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.

@ L., 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
L1-type priors.

Inverse Problems, 28(12):125012.

Felix Lucka, f.lucka@ucl.ac.uk - High-Dimensional Bayesian Inversion with Priors Far from Gaussians 35



Efficient MCMC Techniques for ¢; Priors

1 T T T
MH, A =100
—MH, A =200
0.8 —MH, A =400
Gibbs, A = 100
—Gibbs, A =200
06 —Gibbs, A = 400
N~
o
0.4
0.2
ot ‘ ‘ ‘
0 1 t (sec) 2 3

Temporal autocorrelation R*(t) for 1D TV-deblurring, n = 63.
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Efficient MCMC Techniques for ¢; Priors)

——MH-Iso, n=127, A =280
-~ -RnGibbs, n=127, A =280
— MH-Iso, n =255, A =400
---RnGibbs, n=255, A =400
—MH-Iso, n=511, A =560
---RnGibbs n=511, A =560
—MH-Iso, n=1023, A =800
---RnGibbs, n=1023, A =800

t(sec)  10°

Temporal autocorrelation R*(t) for 1D TV-deblurring.
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