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Quantitative Photoacoustic Breast Imaging

• hybrid imaging: ”light in, sound out”

• non-ionizing, near-infrared radiation

• quantitative images of optical properties

• novel diagnostic information



Photoacoustic Imaging: Spectral Properties
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(from Beard P, 2011)

• different wavelengths allow quantitative spectroscopic examinations.

• gap between oxygenated and deoxygenated blood.



Quantitative Ultrasonic Breast Imaging

• ”sound in, sound out”

• different from conventional US but as safe

• quantitative images of acoustic properties

• novel diagnostic information



H2020 Project: Novel PAT+USCT Mammography Scanner

Novel diagnostic information from optical and acoustic properties



Our Contributions

• simulation studies for

• ultrasonic transducer specification

• light excitation design

• sensing pattern design

• measurement protocol design

• reconstruction algorithm design:

• accuracy vs. computational time/resources/complexity

• scanner modelling

• assist high performance computing implementation

• assist phantom design

• assist calibration measurement design

• process data, refine measurement procedures
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Mathematical Modelling (simplified)

Quantitative Photoacoustic Tomography (QPAT)

radiative transfer equation (RTE) + acoustic wave equation

(v · ∇+ µa(x) + µs(x))φ(x , v) = q(x , v) + µs(x)

∫
Θ(v , v ′)φ(x , v ′)dv ′,

pPA(x , t = 0) = p0 := Γ(x)µa(x)

∫
φ(x , v)dv , ∂tp

PA(x , t = 0) = 0

(c(x)−2∂2t −∆)pPA(x , t) = 0, f PA = MpPA

Ultrasound Computed Tomography (USCT)

(c(x)−2∂2t −∆)pUSi (x , t) = si (x , t), f USi = Mip
US
i i = 1, . . . , nsrc

Step-by-step inversion

1. f US → c : acoustic parameter identification from boundary data.

2. f PA → p0: acoustic initial value problem with boundary data.

3. p0 → µa: optical parameter identification from internal data.



USCT Reconstruction Approaches

(c(x)−2∂2t −∆)pUSi (x , t) = si (x , t), f USi = Mip
US
i i = 1, . . . , nsrc

Travel time tomography: geometrical optics approximation.

X robust & computationally efficient

! valid for high frequencies (attenuation!), low res, lots of data

Reverse time migration: forward wavefield correlated in time with

backward wavefield (adjoint wave equation) via imaging condition

X 2 wave simulations, better quality

! approximation, needs initial guess, quantitative errors

Full waveform inversion (FWI): fit full model to all data.

X high res from little data, transducer modelling, constraints

! many wave simulations, complex numerical optimization

• low TRL but already used in 2D systems



Time Domain Full Waveform Inversion

F (c)pi := (c−2∂2t −∆)pi = si , fi = Mi pi , i = 1, . . . , nsrc

min
c∈C

nsrc∑
i

D
(
fi (c), f δi

)
s.t. fi (c) = MiF

−1(c)si

gradient for first-order optimization via adjoint state method:

∇cD
(
f (c), f δ

)
= 2

∫ T

0

1

c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t) ,

where (c−2∂2t −∆)q∗ = s∗, s∗(x , t) is time-reversed data discrepancy

→ two wave simulations for one gradient

Starting point in 2D:

Pérez-Liva, Herraiz, Ud́ıas, Miller, Cox, Treeby 2017. Time domain

reconstruction of sound speed and attenuation in ultrasound computed

tomography using full wave inversion, JASA.



3D Time Domain FWI for Breast USCT

min
c∈C

nsrc∑
i

D
(
MiF

−1(c)si , f
δ
i

)
∇cD

(
f (c), f δ

)
= 2

∫ T

0

1

c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t)

Challenges and solutions for 3D:

! 2 x nsrc wave simulations per gradient

−→ stochastic quasi-newton optimization (SL-BFGS)

! computationally & stochastically efficient gradient estimator

−→ source encoding for time-invariant systems

! memory requirements of gradient computation

−→ time-reversal based gradient computation

! slow convergence and local minima

−→ coarse-to-fine multigrid schemes

! computational resources

−→ runs on single GPU, can utilize multiple GPUs
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3D FWI: Setup

• color range 1435-1665 m/s

• 3D breast phantom at 0.5mm resolution, 1024 sources and receivers

• 442× 442× 222 voxel, 3912 time steps

Yang Lou et al. Generation of anatomically realistic numerical phantoms

for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/

https://anastasio.wustl.edu/downloadable-contents/oa-breast/


3D FWI: Initialization

sound speed

(color range 1435 to 1665 m/s)

error

(color range -100 to +100 m/s)



3D FWI: 32 Gradient Evaluations (16h, single GPU)

sound speed

(color range 1435 to 1665 m/s)

error

(color range -100 to +100 m/s)



3D FWI: 64 Gradient Evaluations (32h, single GPU)

sound speed

(color range 1435 to 1665 m/s)

error

(color range -100 to +100 m/s)



3D FWI: 128 Gradient Evaluations (64h, single GPU)

sound speed

(color range 1435 to 1665 m/s)

error

(color range -100 to +100 m/s)



3D FWI: Depth vs Error Distribution
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3D FWI in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 4 GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 16 GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



Reconstruction of Initial Photoacoustic Pressure

(c(x)−2∂2t −∆)pPA(x , t) = 0, pPA(x , t = 0) = p0, f PA = MpPA

f PA = MAp0

p̂0 = argmin
p0∈C

∥∥MAp0 − f PA
∥∥2
2

+R(p0)

X linear inverse problem

X variational approach

X first order optimization with early stopping

! model acoustic properties

! acquisition model discrepancies: laser excitation, rotation

! model /calibrate piezoelectric sensor properties: impulse response,

angular sensitivity, ...

Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator

in Photoacoustic Tomography, Inverse Problems 32(11).



Optical & Spectral Inversion: Overview

c µa

µs

�

�

H p0 f

q

• mapping from c to (µa, µs , Γ): spectra?

• q: light source properties?

• mapping from (µa, µs , q) to Φ: non-linear.
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The RTE and Toast++

Radiative transfer equation

(v · ∇+ µa(x) + µs(x))φ(x , v) = q(x , v) + µs(x)

∫
Θ(v , v ′)φ(x , v ′)dv ′

Φ(x) =

∫
φ(x , v)dv , ! (x , v) ∈ R5  direct FEM infeasible.

Diffusion approximation

(µa(x)−∇ · κ(x)∇) Φ(x) =

∫
q(x , v)dv , κ =

1

ν(µa + µs(1− g))

source modelling? diffusivity matching?

Toast++

Schweiger, Arridge, 2014. The Toast++ software suite for forward and

inverse modeling in optical tomography, Journal of Biomedical Optics.



Model Based Inversion

c µa

µs

�

�

H p0 f

q

ĉ = argmin
c∈C

Nλ∑
λ=1

∫
ROI

(
precon0,λ − p0,λ(c)

)2
dx

• solve via iterative first order method (L-BFGS)

• derivatives of Φ(µa, µs) via adjoint method: two solves of light

model per iteration (per wavelength).

• grid/mesh interpolation

Malone, Powell, Cox, Arridge, 2015. Reconstruction-classification

method for quantitative photoacoustic tomography, JBO.



We Have Done This Before?

• well-controlled laboratory experiment

• full characterization of optical, acoustic and thermoelastic properties

of phantom (sO2 analogue)

• examined sensitivities, computational aspects, etc.

• promising results but a lot to improve

Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.

Three-dimensional photoacoustic imaging and inversion for accurate

quantification of chromophore distributions, Proc. SPIE 2017.



Optical Parameters of Biological Tissues

Oxyhemoglobin

Deoxyhemoglobin

Elastin

Collagen

Lipid (a) (b)

Water

(from Beard P, 2011)

• based on different studies with different techniques

• mix of model assumptions and measurements

• often aimed at providing ”somewhat” realistic values for simulations,

not precise values for inversion

• the more you read about it, the less confident you get

Jacques, 2013. Optical properties of biological tissues: A review, Phys.

Med. Biol.



Summary

Mammography scanner:

• novel diagnostic information from optical and acoustic properties

• high res, quantitative, deep into the breast

• 5 years of design, specification, component improvement

• things are coming together, stress levels are rising...

3D USCT:

• proof-of-concept studies of TD-FWI for high res 3D USCT in < 24h

• stochastic L-BFGS with source encoding

• time reversal based gradient computation

• multi-grid initialization

3D QPAT:

• we’ll see how far we get :)
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Thank you for your attention!

L, Pérez-Liva, Treeby, Cox, 2020. Time-Domain Full Waveform

Inversion for High Resolution 3D Ultrasound Computed Tomography of

the Breast, in preparation.

Fonseca, Malone, L, Ellwood, An, Arridge, Beard, Cox, 2017.

Three-dimensional photoacoustic imaging and inversion for accurate

quantification of chromophore distributions, Proc. SPIE 2017.
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