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Bayesian Inference for Inverse Problems

Noisy, ill-posed inverse problems:

f=N(A(u),e)

/

Example: f = Au+¢
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Probabilistic representation allows for a rigorous quantification of the
solution’s uncertainties.



Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and ridge regression:

oy =argmin{3f —Aul3+X|D7ull1}
u

(e.g. total variation, wavelet shrinkage, LASSO,...)
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Sparsity / Compressible Representation

(a) 100% (b) 10% (c) 1%

Sparsity a-priori constraints are used in variational regularization,
compressed sensing and ridge regression:

oy =argmin{3f —Aul3+X|D7ull1}
u

(e.g. total variation, wavelet shrinkage, LASSO,...)

How about sparsity as a-priori information in the Bayesian approach?
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Outline

@ Introduction: Sparse Bayesian Inversion
@ Sparsity by £, Priors
@ Hierarchical Bayesian Modeling

@ Discussion, Conclusion and Outlook

@ Appendix
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The ¢, Approach to Sparse Bayesian Inversion

Porior (1) X exp (4 ||DTu||5) . Prost(u]F) o exp (—%Hf — Aul - ||DTu||5)

Decrease p from 2 to 0 and stop at p = 1 for convenience.



The ¢, Approach to Sparse Bayesian Inversion &

Porior (1) X exp (4 ||DTu||5) . Prost(u]F) o exp (—%Hf — Aul - ||DTu||g)

Decrease p from 2 to 0 and stop at p = 1 for convenience.
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Bayesian Inference with ¢; Priors

Poost (ulf) ox exp (=31 = AulZ_ =AD" ull)

Aims: Bayesian inversion in high dimensions (n — o0).

Priors: Simple ¢;, total variation (TV), Besov space priors.

Starting points: ‘ \

@ Lassas & Siltanen, 2004. Can one use total variation prior '
for edge-preserving Bayesian inversion? Inverse Problems, 20.  dfeme=s= b

@ Lassas, Saksman & Siltanen, 2009. Discretization invariant
Bayesian inversion and Besov space priors. Inverse Problems
and Imaging, 3(1).

@ Kolehmainen, Lassas, Niinimdki & Siltanen, 2012.
Sparsity-promoting Bayesian inversion. Inverse Problems,
28(2).




Efficient MCMC Techniques for ¢; Priors

Task: Monte Carlo integration by samples from

Poost (u[f) o< exp (—3[1f = AulZ_s = X[ DTul)

Problem: Standard Markov chain Monte Carlo (MCMC) sampler
(Metropolis-Hastings) inefficient for large n or A.

Contributions:
» Development of explicit single component Gibbs sampler.
» Tedious implementation for different scenarios.
» Still efficient in high dimensions (n > 10°).
» Detailed evaluation and comparison to MH.

@ L, 2012. Fast Markov chain Monte Carlo sampling for sparse
Bayesian inference in high-dimensional inverse problems using
LI-type priors. Inverse Problems, 28(12):125012.

vz
=




Efficient MCMC Techniques for ¢; Priors &

(a) Reference (b) MH-Iso, 1h (c) MH-Iso, 4h (d)

(e) Reference (f) SC Gibbs, 1h (g) SC Gibbs, 4h  (h) SC Gibbs, 16h

Deconvolution, simple ¢; prior, n =513 x 513 = 263 169.
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New Theoretical Ideas for an Old Bayesian Debate &

igpp 1= argmax { ppost(U|f)} vs.  ficw ::/u Ppost (u|f) du
ueRn

> CM preferred in theory, dismissed in practice.
» MAP discredited by theory, chosen in practice.




New Theoretical Ideas for an Old Bayesian Debate

igpp 1= argmax { ppost(U|f)} vs.  ficw ::/u Ppost (u|f) du
ueR”

> CM preferred in theory, dismissed in practice.
» MAP discredited by theory, chosen in practice.

However:
> MAP results looks/performs better or similar to CM.
» Gaussian priors: MAP = CM. Funny coincidence?
» Theoretical argument has a logical flaw.




New Theoretical Ideas for an Old Bayesian Debate

Upe :=argmax { ppost(u|f)} vs.  lew ::/u Ppost (u|f) du
ueR" .

> CM preferred in theory, dismissed in practice.
» MAP discredited by theory, chosen in practice.

Contributions:
» Theoretical rehabilitation of MAP.
» Key: Bayes cost functions based on Bregman distances.

» Gaussian case consistent in this framework.

@ Burger & L, 2014. Maximum a posteriori estimates in linear
inverse problems with log-concave priors are proper Bayes
estimators, Inverse Problems, 30(11):114004.

@ Helin & Burger, 2015. Maximum a posteriori probability f \ "o
estimates in infinite-dimensional Bayesian inverse problems, ] ‘
Inverse Problems, 31(8) ) [




Recent Generalization: Slice-Within-Gibbs Sampling

pprior(u) X exp (_)‘HDTu”l)

Limitations:
» D must be diagonalizable (synthesis priors):
> (9-prior: exp (—A[[DTul|9)? TV in 2D/3D?
» Non-negativity or other hard-constraints?

4 J
=
«-/' -‘

Contributions:
> Replace explicit by generalized slice sampling.
> Implementation & evaluation for most common priors.

@ Neal, 2003. Slice Sampling. Annals of Statistics 31(3)

@ L, 2016. Fast Gibbs sampling for high-dimensional Bayesian
inversion. submitted, arXiv:1602.08595

10
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Application to Experimental Data: Walnut-CT &

Cooperation with Samuli Siltanen, Esa Niemi et al.

v

v

Implementation of MCMC methods for Fanbeam-CT.

v

Besov and TV prior; non-negativity constraints.

v

Stochastic noise modeling.

v

Bayesian perspective on limited angle CT.

Use the data set for your own work:
http://www.fips.fi/dataset.php (documentation: arXiv:1502.04064)



Walnut-CT with TV Prior: Full Angle &

(b) MAP, special color scale

(e) CM, special color scale (f) CM of ||Vul|2



Walnut-CT with TV Prior: Full vs. Limited Angle &

(a) MAP, full (b) CM, full

(d) MAP, limited (e) CM, limited (f) CStd, limited



Walnut-CT with TV Prior: Non-Negativity Constraints, Limited Angley

(c) CStd, uncon (d) CStd, non-neg



Outline

@ Introduction: Sparse Bayesian Inversion
@ Sparsity by £, Priors
@ Hierarchical Bayesian Modeling

@ Discussion, Conclusion and Outlook

@ Appendix
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Gaussian increment prior:

pprior(u) X H exp <—M>

» Gaussian variables take values on a characteristic scale, determined

by 7.
» Similar amplitudes are likely, sparsity (= outliers) is unlikely.

uf>
— A =257
— A =50%
— A =100°

0 u3 213 1
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Hierarchical Bayesian Modeling (HBM) of Sparsity

Conditionally Gaussian increment prior:
2
Uiyl — Uj
Pprior(u7) o Hexp (—¥>
. 1
1
Scale-invariant hyperprior to approximate un-informative 7,._1 prior:

—(a B
Phyper (Vi) X ; (o) exp <——

, inverse gamma distribution
i

ut
4 e (2% 2.6e-02)
g ‘ (27, 1.3e-02)
——(25, 6.3e-03)

Phyper(7)

——(2?, 3.0¢-04)
——(27",1.0e-12)

Obe

0 (N v
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The Implicit Energy Functional behind HBM &

[p=1® —p=107—p=107—p=10"p=10"—W o]

N
N

Implicit prior is a Student’s t-prior with v = 2,0 = 3/(2«):

AN
pprior(u) X H (1 + Vlg)

u?
Ppost(u|f) o exp (—%Hf — Au||22;1 -l Z log (1 + y_,0>>

2



Two Approaches to Sparsity &

feature £y prior HBM
() Jull3 51 Y log (1+ )
sparsifying parameter p>0 v>0
quadratic limit p=2 v — 00
sparse limit p—0 v—0
limit functional lulo > log (Ju;l) if all u; # 0,
—00 else
solutions sparse compressible
differentiable p>1 always
convex everywhere for p > 1 ulloo < V1O
homogeneous yes no

Other stuff related to HBM: Graphical models, general linear models, latent
variable models, Variational Bayes, expectation maximization, scale mixture

models, empirical priors, parametric empirical Bayes, automatic relevance
determination...



Hierarchical, Fully Bayesian Computation &

1 2 (228
poea0717) xexp (<317~ Awl =3 (52 4 (a4 1/2) 0g()

i
All computational approaches (optimization or sampling) exploit the
conditional structure:
» Fix v and update u by solving 1 n-dim linear problem.
» Fix u and update v by solving n 1-dim non-linear problems.

Major difficulty: Multimodality of posterior.

Heuristic Full-MAP computation:
» Use MCMC to explore posterior (avoids very sub-optimal modes).

» Initialize alternating optimization by local MCMC averages to
compute local modes.

No guarantee for finding highest mode but usually an acceptable result.



Why HBM? EEG/MEG Source Reconstruction

Aim: Reconstruction of brain activity by non-invasive measurement of
induced electromagnetic fields (bioelectromagnetism) outside of the skull.

source: Wikimedia Commons source: Wikimedia Commons
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Why HBM? EEG/MEG Source Reconstruction &

Aim: Reconstruction of brain activity by non-invasive measurement of
induced electromagnetic fields (bioelectromagnetism) outside of the skull.

source: Wikimedia Commons source: Wikimedia Commons

Notoriously ill-posed problem!
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Workgroup “Methods in Bioelectromagnetism” in Miinster 4

Aim: Improve quality, applicability and reliability of EEG/MEG based
source reconstruction for the presurgical diagnosis of epilepsy patients.



Challenges: Forward Modeling & Computation

Realistic and individual head models for simulating the forward equations.

segmentation

o brain

surface
extraction

|

Cme

tetrahedral
meshing

>‘ registration

Ll

anisotropy




Why Non-Convex Functionals?! An lllustration

Reference (green cone) and MAP for Gaussian prior (red cones):

tape = argmin {||f — Aul[3 + N[ un, 13}
u

& Vs 3
e R N
RRIGRAN Yy

oy
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Why Non-Convex Functionals?! An lllustration

Reference (green cone) and MAP for ¢4 prior (red cones):

thape = argmin {||f — Aul[3 + [ tm 11 }
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Why Non-Convex Functionals?! An lllustration

Reference (green cone) and single dipole scan (red cone):

0 if |Uamp|0 =1

Usps = argmin {||f —Aul?+ N1(u)} , Nyi(u) =
u oo else
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Why Non-Convex Functionals?! An lllustration

Reference (green cone) and HBM-MAP estimate (red cone):

v—1

02
something like —uyap =~ argmin < || — A u||§ + log 14+ ==
u 2 vl
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The Curse of Convexity: Depth Bias &

"Theorem”: All MAP estimates for posteriors like

o) x93~ A0 + Y )

with priors that are uniform in i (no weighting) with convex g have depth
bias:

> || has its maximum at the boundary of the gray matter.

> The proof combines properties of the adjoint problem of EEG/MEG
with convex analysis (appendix).

Our (earlier) empirical results for EEG confirm this:

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian
inference for the EEG inverse problem using realistic FE head models:
Depth localization and source separation for focal primary currents.
Neurolmage, 61(4):1364-1382.
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HBM for EEG/MEG Source Reconstruction

» HBM does not suffer from systematic depth miss-localization.

» HBM shows promising results for focal brain networks with
simulated and real data.

» Focus of my PhD work: HBM for EEG-MEG combination.

ﬁ L., Aydin, Vorwerk, Burger, Wolters, 2013. Hierarchical Fully-Bayesian
Inference for Combined EEG/MEG Source Analysis of Evoked Responses: From
Simulations to Real Data.

BaCl 2013, Geneva.

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Fully-Bayesian Inference for
EEG/MEG combination: Examination of Depth Localization and Source
Separation using Realistic FE Head Models.

Biomag 2012, Paris

ﬁ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.

Neurolmage, 61(4):1364-1382.
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Summary, Conclusions & Outlook &

Bayesian Modeling:
» Sparsity can be modeled in different ways.
» HBM is an interesting but challenging alternative to ¢, priors.

» Combine /,-type and hierarchical priors: £,-hypermodels.

Bayesian Computation:
> Elementary MCMC samplers may perform very differently.

> Contrary to common beliefs sample-based Bayesian inversion in high
dimensions (n > 10°) is feasible if tailored samplers are developed.

» Reason for the efficiency of the Gibbs samplers is unclear.
» Adaptation, parallelization, multimodality, multi-grid.

» Heuristic, fully Bayesian computation for HBM looks promising but
needs more careful examination.
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Summary, Conclusions & Outlook &

Bayesian Estimation / Uncertainty Quantification
» MAP estimates are proper Bayes estimators.

» But: Everything beyond "MAP or CM?" is far more interesting and
can really complement variational approaches.

» However: Extracting information from posterior samples (data
mining) is a non-trivial (future research) topic.

» Application studies had proof-of-concept character up to now.

» Specific UQ task to explore full potential of the Bayesian approach.
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M. Burger, L., 2014. Maximum a posteriori estimates in linear inverse problems
with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.
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EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.
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Thank you for your attention!

@ L, 2016. Fast Gibbs sampling for high-dimensional Bayesian inversion. submitted,
arXiv:1602.08595

L., 2014. Bayesian Inversion in Biomedical Imaging
PhD Thesis, University of Miinster.

[
B M. Burger, L., 2014. Maximum a posteriori estimates in linear inverse problems
with log-concave priors are proper Bayes estimators
Inverse Problems, 30(11):114004.
@ L., 2012. Fast Markov chain Monte Carlo sampling for sparse Bayesian inference
in high-dimensional inverse problems using L1-type priors.
Inverse Problems, 28(12):125012.

@ L., Pursiainen, Burger, Wolters, 2012. Hierarchical Bayesian inference for the
EEG inverse problem using realistic FE head models: Depth localization and
source separation for focal primary currents.

Neurolmage, 61(4):1364-1382.
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Efficient MCMC Techniques for ¢; Priors

1 T T T
MH, A =100
—MH, A =200
0.8 —MH, A =400
Gibbs, A = 100
—Gibbs, A =200
06 —Gibbs, A = 400
N~
o
0.4
0.2
ot ‘ ‘ ‘
0 1 t (sec) 2 3

Temporal autocorrelation R*(t) for 1D TV-deblurring, n = 63.
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Efficient MCMC Techniques for ¢; Priors)

——MH-Iso, n=127, A =280
-~ -RnGibbs, n=127, A =280
— MH-Iso, n =255, A =400
---RnGibbs, n=255, A =400
—MH-Iso, n=511, A =560
---RnGibbs n=511, A =560
—MH-Iso, n=1023, A =800
---RnGibbs, n=1023, A =800

t(sec)  10°

Temporal autocorrelation R*(t) for 1D TV-deblurring.
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Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

» For A\, = const., n — oo the TV prior diverges.
» CM diverges.
» MAP converges to edge-preserving limit.

uto utoe
—n= 63 || —n= 63|
—n= 255 —n = 255
n= 1023 n = 1023
n= 4095 n = 4095
n = 16383 n = 16383
—n = 65535 —n = 65535

0 13 213 10 1/3 23 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



Verification of Theoretical Predictions by MCMC &

Numerical verification of the discretization dilemma of the TV prior

(Lassas & Siltanen, 2004):
» For A\, = const., n — oo the TV prior diverges.

» CM diverges.
» MAP converges to edge-preserving limit.

whoe ut
—n = 63
—n = 255

n= 1023

n= 4095

n = 16 383
—n = 65535

213

213 13

(a) Zoom into CM estimates (b) MCMC convergence check



Verification of Theoretical Predictions by MCMC

Numerical verification of the discretization dilemma of the TV prior
(Lassas & Siltanen, 2004):

» For A\, xv/n+1, n — oo the TV prior converges to a smoothness prior.
» CM converges to smooth limit.
» MAP converges to constant.

oo

il utes 1 ut
—n= 63 —n = 63

—n= 255 —n= 255

n= 1023 n= 1023

n = 4095 n = 4095

n = 16383 n = 16383

—n = 65535 —n = 65535

0 13 2/3 10 13 213 1

(a) CM by our Gibbs Sampler (b) MAP by ADMM



Need for New Theoretical Predictions

For images dimensions > 1: No theory yet...but we can compute it.

Test scenario:

» CT using only 45 projection angles and 500 measurement pixel.

m 4: |

real solution data f colormap
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 642, A =500 CM, n= 642, A =500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 1282, A = 500 CM, n= 1282, A\ = 500
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Need for New Theoretical Predictions &

For images dimensions > 1: No theory yet...but we can compute it.

MAP, n = 2562, A = 500 CM, n = 2562, X\ = 500

cf. Louchet, 2008, Louchet & Moisan, 2013 for the denoising case, A = I.
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Examination of Alternative Priors by MCMC: TV-p

Ppost(U) o exp (—%Hf —A “”2):;1 - A ||DTu||g)

ah wuhes

1 — p=141 — p=14
— p=1.2 7 3 — p=12

— p=1.0 — p=1.0

— p=0.8 — p=0.8

0 o ] Ny
0 1}3 2)3 10 1}3 2)3 1

(c) CM (Gibbs-MCMC) (d) MAP (Simulated Annealing)
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MAP vs. CM Estimates: The Classical View &

A theoretical argument "decides” the conflict: The Bayes cost formalism.

» An estimator is a random variable, as it relies on f and wv.
» How does it perform on average? Which estimator is "best?
» ~ Define a cost function ¥ (u, v).

» Bayes cost is the expected cost:

BC(0) = / / (u, B(F)) pre(F1u) AF Poior () du

v

Bayes estimator Ugc for given ¥ minimizes Bayes cost. Turns out:

tec(r) = argmin { [ (0,0(7) pps(ul) )
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MAP vs. CM Estimates: The Classical View &

Main classical arguments pro CM and contra MAP estimates:
» CM is Bayes estimator for ¥(u, 8) = ||u — @||3 (MSE).
» Also the minimum variance estimator.

» The mean value is intuitive, it is the "center of mass”, the known
"average”.

» MAP estimate can be seen as an asymptotic Bayes estimator of

7, (u, B) 0, if |lu—10]eo<e
e\U,u) = .
1 otherwise,

for ¢ — 0 (uniform cost). = It is not a proper Bayes estimator.

» MAP and CM seem theoretically and computationally fundamentally
different = one should decide.

> “A real Bayesian would not use the MAP estimate”

» People feel "ashamed” when they have to compute MAP estimates
(even when their results are good).
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A False Conclusion

“A real Bayesian would not use the MAP estimate as it is not a proper
Bayes estimator”.

"MAP estimate can be seen as an asymptotic Bayes estimator of

0, if lu—ille <e

U (u, )=
(u, ) 1 otherwise,

for e —» 0.
777==777 It is not a proper Bayes estimator.”

"MAP estimator is asymptotic Bayes estimator for some degenerate ¥”
=+ “MAP can’t be Bayes estimator for some proper ¥" Il
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Two New Bayes Cost Functions &

Define
(2) Wus(u, ) = [|A(G = u)ll3-s + BIIL(D — u)||3
(b) Ve (. ) := [ A(D — w)|2_ + AD (8. u)
for a regular L and 8 > 0.
Properties:
» Proper, convex cost functions
» For J(u) = B/\||Lu||3 (Gaussian case!) we have AD (&I, u) =
B|IL(t — v)||3, and Ys(u, i) = Wy, (u, &)!
Theorems:

(I) The CM estimate is the Bayes estimator for ¥s(u, i)
(I1) The MAP estimate is the Bayes estimator for W, (u, 01)

Felix Lucka, f.lucka@ulc.ac.uk - Sparse Bayesian Inversion in Biomedical Imaging 42



Bregman distances &

For a proper, convex functional ¥ : R" — R U {oo}, the Bregman
distance D,(f,g) between f, g € R" for a subgradient p € 9V(g) is
defined as

Dy(f,g) =V(f)—V(g)— (p,f—g), pecdV(g)

T T T

\ Dy (,0) = T(w) = T (v) = T (0) (u ~ v) Dy (u,v) =7 (w) = T () ~ glu— )
: : : with ¢ € 0 (v)
e B e
| o Dy N
Dy (u,v) 3 ! | T (@) +pz—v)
R R e B e S IS R TR 1
' T () + T (v)(z —v) D?(u.v? ! J ) +r(z—v)
) ) ) - L opredd() =[-1,1]
% PR T
(e) T(x)=x2 (f) T(x) = |x|

Basically, Dy(f, g) measures the difference between W and its
linearization in f at another point g



Depth Bias: Optimality and the Adjoint Problem

Variational regularization:

& = argmin { | — Aul3 + 7 (u)}

First order optimality condition:
AT(F— AN+ T() =0 =  J'(a)=AT (f—Ad)

That means: 7'(i1) € Range(AT). How does Range(AT) look like?
» AT is a discretization of the adjoint PDE to EEG / MEG.
> It maps electric potentials / magnetic fields to currents in the brain.
» Essentially solves the tCS / TMS brain stimulation problem.

@ Vallaghé, Papadopoulo, Clerc, 2009. The adjoint method for general
EEG and MEG sensor-based lead field equations Phy. Med. Bio.
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Solutions to the tCS Problem

W Paches
sk

Skl compacta
B Skl spongiosa

5 Gray matter

@ Wagpner, 2015. Optimizing tCS and TMS multi-sensor setups using
realistic head models PhD Thesis, University of Miinster.

See his poster: "Optimized stimulation protocols in transcranial direct
current stimulation”.

J'(0) € Range(AT) = J'(@) fulfills maximum principle (in continuous
limit) and obtains its maximum at the gray matter boundary!



Depth Bias: The Curse of (Uniform) Convexity

Assume
> J(u) <>, g(|ui]) (uniform in i).
» for simplicity, u is scalar.

» g(x): Rt — R" non-decreasing: g’(x) > 0.

If g is convex, s "inherits” maximum principle:

> g(x) is convex

= g"(x) = 0.
> g'(x) >0, g"(x) >0

= g’(x) is positive, non-decreasing.
> g'(|uil) = &'(|ujl)

= |uil = |uj|.

> (J'()); = &'(|ti]) has its maximum on boundary 1 /

= || has its maximum at the boundary

— 1

—> Depth bias!

~x

~a/V1+a?

(nothing really changes in the vectorial case; for g’(0) # 0 or o
other non-smoothness, we need subdifferential calculus)

g'(x)



Depth Bias: The Blessings of Non-Convexity

Assume
> J(u) x> ;g(|ui]), and that u is scalar.
» g(x): Rt — RT non-decreasing: g(x)’ > 0.

If g is non-convex, g’(x) does not necessarily induce
an order and U does not need to "inherit” maximum
principle!

But caution:

> We need to analyze second order optimality
condition as well!

Comments:

» Multiple-dipole scans are (extremely) non-convex.

» Heuristic justifies fully-Bayesian inference which
preserves and explores the non-convexity.

—
——~ log(1+2%)
~log(l+z)

g(x)

—
~az/(1+a?)
~1/(1+a)




What About Weightings?

Non-uniform convexity J(u) < >_; g (le'i‘l/,»
such as WMNE, WMCE, ...

Or post-processing by weighting (noise-normalization):
oy = wi (@), l“J:argmin{||f—Au||§+J(u)}
u

such as sSLORETA, DSPM, ...

Does that help?
> Static weights are often optimized to recover single sources.

» Empirically, sub-optimal for multiple sources (contrary to common
misconception).

> Adaptive, iterative weighting often actually optimizes underlying
non-convex model.



	Introduction: Sparse Bayesian Inversion
	Sparsity by p Priors
	Hierarchical Bayesian Modeling
	Discussion, Conclusion and Outlook
	Appendix

