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Photoacoustic Sensing Systems

from: Beard, 2011, Interface Focus; Jathoul et al., 2015, Nature Photonics

I High res 3D PA images require sampling acoustic waves with a
frequency content in the tens of MHz over cm scale apertures.

I Nyquist criterion results in tens of µm scale sampling intervals
=⇒ several thousand detection points.

I Sequential scanning currently takes several minutes.

I Parallelized schemes (arrays) become prohibitively expensive.

I Crucial limitation for clinical, spectral and dynamical PAT (4D PAT).

Felix Lucka, f.lucka@ucl.ac.uk - 4D PAT based on Sparse Variational Methods 1



Photoacoustic Sensing Systems

from: Beard, 2011, Interface Focus; Jathoul et al., 2015, Nature Photonics

I High res 3D PA images require sampling acoustic waves with a
frequency content in the tens of MHz over cm scale apertures.

I Nyquist criterion results in tens of µm scale sampling intervals
=⇒ several thousand detection points.

I Sequential scanning currently takes several minutes.

I Parallelized schemes (arrays) become prohibitively expensive.

I Crucial limitation for clinical, spectral and dynamical PAT (4D PAT).

Felix Lucka, f.lucka@ucl.ac.uk - 4D PAT based on Sparse Variational Methods 1



Accelerated High-Res PAT via Compressed Sensing

from: Beard, 2011, Interface Focus; Jathoul et al., 2015, Nature Photonics

Key observation and idea:

I Nyquist is too conservative as only band-limitlessness is assumed.

I Typical targets have additional structure, e.g., low spatial complexity
(sparsity).

I Regularly sampled data is highly redundant.

I Non-redundant part could be sensed faster.

I Accelerated acquisition without significant loss of image quality.

Established as compressed sensing, successful in similar modalities.
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Novel Fabry-Pérot-Based Sensing Systems

I Single-point sub-sampling (structured or random).

I Patterned interrogation by micromirror array, similar to ”single-pixel”
Rice camera.

I Multi-beam scanning + sub-sampling.

Applicable to other sequential scanning schemes, we focused on Fabry
Pérot interferometer.
See Huynh et al., 2014, 2015, 2016 for technical details.



PA Image Reconstruction from Sub-Sampled Data

Image model: f ci = Ci fi = Ci (Api + εi ) for each frame i .

Image reconstruction:

I f ci −→ fi , fi −→ pi by standard method, frame-by-frame.

I f ci −→ pi : standard or new method, frame-by-frame.

I F c −→ F , fi −→ pi by standard method, frame-by-frame.

I F c −→ P: Full spatio-temporal method.



Standard Reconstruction & Numerical Wave Propagation

Analytic methods, e.g. eigenfunction expansion and closed-form
filtered-backprojection, are too restrictive for us.

Time Reversal (TR):

I ”Least restrictive PAT reconstruction”

I Sending the recorded waves ”back” into volume.

I Requires a numerical model for acoustic wave propagation.

k-Wave(∗) implements a k-space pseudospectral method to solve
the underlying system of first order conservation laws:

I Compute spatial derivatives in Fourier space: 3D FFTs.

I Modify finite temporal differences by k-space operator and use
staggered grids for accuracy and robustness.

I Perfectly matched layer to simulate free-space propagation.

I Parallel/GPU computing leads to massive speed-ups.

(∗)B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox for the simulation

and reconstruction of photoacoustic wave fields, Journal of Biomedical Optics.



A Realistic Numerical Phantom



Time Reversal for Sub-Sampled Data

(a) IC, n = 2563 (b) high con., IC, n = 1283 (c) sub-sampling, 128x

(d) TR 1 (e) TR 2 (f) TR 2, sub-sampled
sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Time Reversal for Sub-Sampled Data II

(a) IC, n = 2563 (b) high con., IC, n = 1283 (c) sub-sampling, 1/128

(d) TR 1 (e) TR 2 (f) TR 2, sub-sampled
sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Variational Approaches & the PAT Adjoint

Solving variational regularization problems

p̂ = argmin
p>0

{
1
2‖CAp − f c‖22 + λJ (p)

}
iteratively by first-order methods requires implementation of A and A∗.

k-Wave yields a discrete representation Aκ. For A∗, one can

1) adjoint k-Wave iteration to obtain (Aκ)∗ (algebraic adjoint):

X high numerical accuracy.
! tedious derivation, specific for k-Wave, limited insights.

Huang, Wang, Nie, Wang, Anastasio, 2013. IEEE Trans Med Imaging

2) derive analytical adjoint and discretize it, e.g., (A∗)κ.

X good numerical accuracy.
X simple proof, theoretical insights, generalizes to various numerical

schemes.

Arridge, Betcke, Cox, L, Treeby, 2015. On the Adjoint Operator in

Photoacoustic Tomography, (submitted, arXiv:1602.02027).



Comparison for Full Data

p̂ = argmin
p>0

{
1
2
‖Ap − f ‖22 + λJ (p)

}

(a) n = 2563 (b) TR (c) LS+ (d) TV+

(e) n = 1283 (f) TR (g) LS+ (h) TV+

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Sub Sampled Data, Best Case Scenario

p̂ = argmin
p>0

{
1
2
‖CAp − f c‖22 + λJ (p)

}

(a) n = 1283 (b) TR (c) L2+ (d) TV+

(e) SubSam, 128x (f) TR (g) L2+ (h) TV+

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view



Contrast Enhancement by Bregman Iterations

Variational approaches,

p̂ = argmin
p

{
1
2‖CAp − f c‖22 + λJ (p)

}
,

suffer from systematic bias  problem for quantitative use!
(e.g., contrast loss for TV).

=⇒ Iterative enhancement trough Bregman iterations:

pk+1 = argmin
p

{
1

2
‖CAp − (f c + bk)‖22 + λJ (p)

}
bk+1 = bk +

(
f c − CApk+1

)
Potential for improving reconstruction from sub-sampled data
demonstrated in various applications.

Osher, Burger, Goldfarb, Xu, Yin, 2006. An iterative regularization
method for total variation-based image restoration, Multiscale Modeling
and Simulation, 4(2):460-489.
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Contrast Enhancement by Bregman Iterations

(a) TV+, full data (b) TV+Br, full data (c) (pTV+Br−pTV+)+,
full data

(d) (pTV+Br−pTV+)−,
full data

(e) TV+, rSP-128 (f) TV+Br, rSP-128 (g) (pTV+Br−pTV+)+,
rSP-128

(h) (pTV+Br−pTV+)−,
rSP-128

sensor on top; inverse crime data sampled at Nyquist; max intensity proj., side view
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Inverse Crimes

!Data created by the same forward model used for reconstruction!

(a) c0 + c̃ (b)
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(c) pressure-time courses

To avoid strong inverse crime:

I Generate data with perturbed, heterogeneous acoustic model.

I Model inhomogenous sensitivity and noise level of sensor channels.
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Nyquist Rates in Space and Time

I Up to now, ”full data”corresponded to data sampled at Nyquist rates
in space and time (numerical phantoms were band-limited in space).

I In experiments, the ”full data” is usually already sub-sampled in
space but over-sampled in time.

I Reconstruction on a finer spatial grid to exploit high frequency
content of time series.

Example:

I Scan a 20mm×20mm with δx = 150µm (133× 133 locations).

I Measured with temporal resolution of δt = 12ns ≈ 83MHz.

I Low-pass filtered to 20MHz.

I Reconstructing a signal limited to 20MHz with a sound speed of
1540m s−1 would required δx = 38.5µm and δt = 25ns.
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Sub Sampled Data, Realistic Case Scenario

”Full data” is acquired on a grid which is 2 times too coarse (= factor 4).

(d) single point (e) TV+Br, 1x (f) TV+Br, 8x (g) TV+Br, 32x

(h) patterned inter-
rogation

(i) TV+Br, 1x (j) TV+Br, 8x (k) TV+Br, 32x

sensor on top; max intensity proj., side view
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Leaving the Comfort Zone: Reproduction on Real Data

I Two polythene tubes filled with
10/100% ink.

I Stop-motion-style data acquisition
of pulling one tube end.

I 45 frames (15min acquisition time
per frame).

I Full data reconstructions to
validate sub-sampling.



Full Data

TR & TV denoising TV+



Random Point Sub-Sampled Data, 4x

TR & TV denoising TV+



Random Point Sub-Sampled Data, 8x

TR & TV denoising TV+



Random Point Sub-Sampled Data, 16x

TR & TV denoising TV+



In Vivo Mesurements: Full Data

TR & TV denoising Bregman TV+



In Vivo Mesurements: 4x

TR & TV denoising Bregman TV+



In Vivo Mesurements: 8x

TR & TV denoising Bregman TV+



Simulation, Exp. Phantom & In-Vivo Studies

Reaching a high acceleration through sub-sampling requires:

I Accurate model fit:

! inhomogeneous optical excitation
! uncertainty of acoustic parameters
! inhomogeneity and defects of FP sensor
! data artifacts by reflections / external sources

=⇒ Develop suitable, automatic pre-processing.
=⇒ Refine forward model used.

I Suitable regularization functionals:

! TV is limited, especially for in-vivo data.
! Experimental phantoms and in-vivo data are different.

=⇒ Develop suitable regularizing functionals.
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Spatio-Temporal Reconstruction

Continuous data acquisition

=⇒ tradeoff between spatial and temporal resolution.

Different dynamic models:

I Low-Rank (functional imaging with static
anatomies/QPAT).

I Low-Rank + sparsity.

I Tracer uptake/wash-in models.

I Perfusion models.

I Needle guidance

I Optical flow constraints for joint image reconstruction
and motion estimation.



Summary

Challenges of fast, high resolution 3D PA sensing:

I Nyquist requires several thousand detection points.

I Sequential schemes are slow.

I Parallelized schemes are prohibitively expensive.

I Crucial limitation for clinical, spectral and dynamical PAT.

Acceleration through sub-sampling:

I Exploit low spatio-temporal complexity of many targets.

I Acceleration by sub-sampling the incident wave field to maximize
non-redundancy of data.

I Requires development of novel scanners.

I Demonstrated for Fabry-Pérot interferometer.
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Summary II

Results:

I Novel sensing systems are developed.

I Standard reconstruction methods fail on sub-sampled data.

I Adjoint PAT operator allows to use variational approaches.

I Sparse variational regularization gives promising results for
sub-sampled data.

I Demonstrated on simulated, experimental phantom and in-vivo data.

Challenges:

I Realizing this potential with experimental data requires model
refinement/calibration and development of pre-processing.

I High computational complexity.

Outlook:

I Spatio-temporal variational models to exploit temporal redundancy.

I More suitable regularization functionals.
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Thank you for your attention!

Arridge, Betcke, Cox, L, Treeby, 2015. On the Adjoint Operator in
Photoacoustic Tomography, (submitted, arXiv:1602.02027).

Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang, 2016.
Accelerated High-Resolution Photoacoustic Tomography via Compressed
Sensing, (almost submitted).

We gratefully acknowledge the support of NVIDIA Corporation with the donation

of the Tesla K40 GPU used for this research.
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Iterative Schemes: Adjoint vs. Time Reversal

pk+1 = Π
(

pk − θB
(

Apk − f
))

(a) Ground truth p0 (b) TR (c) iTR (d) iTR+

(e) TV+ (f) BP (g) LS (h) LS+

sensor on top; 2D slices at y = 128 through the 3D reconstructions.


	anm0: 
	anm1: 
	anm2: 
	anm3: 
	anm4: 
	anm5: 
	anm6: 
	anm7: 
	anm8: 
	anm9: 
	anm10: 
	anm11: 
	anm12: 
	anm13: 


