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Introduction and Overview



Computational Imaging @ CWI

• headed by Tristan van Leeuwen, 18 members

• mathematics, computer science, (medical) physics & engineering

• advanced computational techniques for 3D imaging

• (inter-)national collaborations from science, industry & medicine

• one of the two main developers of the ASTRA Toolbox

• FleX-ray Lab: custom-made, fully-automated X-ray CT scanner

linked to large-scale computing hardware
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X-ray Computed Tomography (CT)

• X-rays (high-energy photons) get attenuated by matter

• 3D attenuation image computed from different 2D projections
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X-ray Computed Tomography (CT)

(a) Modern CT scanner (b) CT scan of a patient’s lung

Source: Wikimedia Commons
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Imaging Across Disciplines

Observational astronomy

Life and material science

microscopy

Medical imaging

CT, MRI, US, PET, SPECT...

Geophysical imaging

(electrical) resistivity, seismic

(ground-penetrating) radar...

Remote sensing

military/intelligence,

earth/climate science

Industrial process imaging
Source: Wikimedia Commons

Mathematical Imaging: Reconstruct spatially distributed of quantities

of interest from indirect observations through algorithms derived from

rigorous mathematics.
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Imaging: An Inverse Problem

Inverse problem: Recover unknowns u (image) from data f via

f = A(u) + ε

• Forward operator A solution of PDE modelling underlying physics.

• Typical inverse problems are ill-posed.

• Stable solution requires a-priori information on u.
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Overview Inverse Problems / Imaging Workflow

mathematical modeling:

physics, PDEs, approximations

reconstruction/inference approach:

regularization, statistical inference,

machine learning

theoretical analysis:

uniqueness, recovery conditions,

stability

reconstruction algorithm:

PDEs, numerical linear algebra,

optimization, MCMC

large-scale computing:

parallel computing, GPU computing

(s · ∇+ µa(x) + µs(x))φ(x , s)

= q(x , s)+µs(x)

∫
Θ(s, s ′)φ(x , s ′)ds ′
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Current Challenges in Computational Imaging

core development for new modalities:

hybrid imaging

more from more:

multi-spectral, multi-modal, high resolution

same from less:

low-dose, limited-view, compressed, dynamic

break the routine:

real-time, adaptive, explorative

uncertainty quantification & quantitative imaging

machine learning:

embedding, networks for 3D/4D, clinical training data

Input	
Hidden	

Output	



Examples



FleX-ray Lab

Source Detector

Sample stage

• custom-built, fully-automated, highly flexible

• Aim: Proof-of-concept experiments directly accessible to

mathematicians and computer scientists.
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X-Ray Scan of Static Object

We share

• data sets on zenodo.org, community ”CI-CWI”

• open data processing and reconstruction software:

astra-toolbox.com, github.com/cicwi

Der Sarkissian, L, van Eijnatten, Colacicco, Coban, Batenburg, 2019.

A Cone-Beam X-Ray CT Data Collection Designed for Machine Learning,

Scientific Data 6, 215 (2019).

https://zenodo.org/communities/ci-cwi/
https://www.astra-toolbox.com/
https://github.com/cicwi


X-Ray Scan of Dynamic Object

• canonical example of temperature-driven two-phase flow instability

• 120 projections per rotation → each projection averaged over 3◦

• 40ms exposure per projection → 4.8s per rotation
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Example: Fluidized Bed Reactors

Collaboration with the Transport Phenomena group at TU Delft.
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Overview Dynamic Imaging

Applications
• scientific, industrial and clinical

• vast range of dynamics (rigid motion, elastic deformation, fluid

dynamics, crack formation, chemical kinetics, granular flows, ...)

Goals
• motion compensation

• gating

• full dynamic reconstruction (+ simultanous motion estimation?)

• parameter identification in dynamical systems

Challenges
• dynamics too fast for high quality frame-by-frame reconstruction

(motion artefacts, noise, low angular res,...)

• mathematical modeling of dynamics

• computational image reconstruction



4D Image Reconstruction Challenges

		

		 		

		

		

				

time/angle!

• binning:

• large bins −→ motion artifacts

• small bins −→ undersampling /limited view

• 4D is computationally heavier than 3D series

• No ”golden bullet”: different dynamics, different methods
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Lava Lamp: Frame-by-Frame Reconstruction
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Joint Image Reconstruction and Motion Estimation

reconstruct image sequence u and motion fields v simultaneously

min
u,v

∑
t

‖At ut − ft‖22 + J (ut) +M(u, v) +H(v)

• data discrepancy

• motion model (PDE)

• spatial assumptions on image

• spatial assumptions on motion

numerical optimization

• alternate between image reconstruction and motion estimation

• image reconstruction convex but non-smooth

primal-dual (”Chambolle-Pock”), augmented Lagrangian (”ADMM”)

• motion estimation difficult, non-convex, non-smooth

multi-resolution schemes (pyramids) with linearizations
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Lava Lamp: Spatio-Temporal Reconstruction
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Lava Lamp: Image and Motion Estimation
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Dynamic Compressed Sensing for Photoacoustic Tomography

full data, TV-fbf 16x, TV-fbf 16x, TVTVL2

X maxIP

Y maxIP

Z maxIP

• compressed sensing data acquisition

• evaluation on experimental phantoms and in-vivo recordings

L, Huynh, Betcke, Zhang, Beard, Cox, Arridge, 2018. Enhancing Compressed

Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation,

SIAM Journal on Imaging Sciences 11:4, 2224-2253.



Dynamic Compressed Sensing via Deep Learning

Hauptmann, Arridge, L, Muthurangu, Steeden, 2018. Real-time

cardiovascular MR with spatio-temporal artifact suppression using deep

learning - proof of concept in congenital heart disease, Magnetic

Resonance in Medicine.

Felix.Lucka@cwi.nl Image Reconstruction for Applied Mathematicians 24 Feb 2022



Motivation: Breast Cancer Imaging

Most common cause of cancer death

in women worldwide.

• 25% of all cancer cases in women

• 15% of all cancer deaths in women

Despite advances in early detection and diagnosis:

Urgent need for novel imaging techniques providing higher

specificity, contrast and image resolution than X-ray

mammography at lower costs than MRI.
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Quantitative Photoacoustic Breast Imaging

• hybrid imaging: ”light in, sound out”

• non-ionizing, near-infrared radiation

• quantitative images of optical properties

• novel diagnostic information



Photoacoustic Imaging: Spectral Properties

Oxyhemoglobin

Deoxyhemoglobin

Elastin

Collagen

Lipid (a) (b)

Water

(from Beard P, 2011)

• different wavelengths allow quantitative spectroscopic examinations.

• gap between oxygenated and deoxygenated blood.

• use of contrast agents for molecular imaging.



Quantitative Ultrasonic Breast Imaging

• ”sound in, sound out”

• different from conventional US but as safe

• quantitative images of acoustic properties

• novel diagnostic information



Photoacoustic and Ultrasonic Mammography Scanner

Aim: novel diagnostic information from high resolution maps of

optical and acoustic properties

• 512 US transducers on rotatable half-sphere

• 40 optical fibers for photoacoustic excitation



Partners in H2020 Project



Mathematical Modelling (simplified)

Quantitative Photoacoustic Tomography (QPAT)

radiative transfer equation (RTE) + acoustic wave equation

(v · ∇+ µa(x) + µs(x))φ(x , v) = q(x , v) + µs(x)

∫
Θ(v , v ′)φ(x , v ′)dv ′,

pPA(x , t = 0) = p0 := Γ(x)µa(x)

∫
φ(x , v)dv , ∂tp

PA(x , t = 0) = 0

(c(x)−2∂2t −∆)pPA(x , t) = 0, f PA = MpPA

Ultrasound Tomography (UST)

(c(x)−2∂2t−∆)pUSi (x , t) = si (x , t), f USi = Mip
US
i , i = 1, . . . , ns

Step-by-step inversion

1. f US → c : acoustic parameter identification from boundary data.

2. f PA → p0: acoustic initial value problem with boundary data.

3. p0 → µa: optical parameter identification from internal data.



UST Reconstruction Approaches

(c(x)−2∂2t −∆)pi (x , t) = si (x , t), fi = Mipi , i = 1, . . . , nsrc

Travel time tomography (TTT): geometrical optics approximation.

X robust & computationally efficient

! valid for high frequencies (attenuation!), low res, lots of data

Reverse time migration (RTM): forward wavefield correlated in time

with backward wavefield (adjoint wave equation) via imaging condition.

X 2 wave simulations, better quality than TTT.

! approximation, needs initial guess, quantitative errors

Full waveform inversion (FWI): fit full model to all data.

X high res from little data, transducer modelling, constraints

! many wave simulations, complex numerical optimization

• low TRL but already used in 2D systems

time domain vs frequency domain methods



3D Time Domain FWI for Breast USCT

Starting point:

Pérez-Liva, Herraiz, Ud́ıas, Miller, Cox, Treeby 2017. Time domain

reconstruction of sound speed and attenuation in ultrasound computed

tomography using full wave inversion, JASA.

Challenges and solutions for 3D:

! 2 x nsrc wave simulations per gradient

−→ stochastic quasi-newton optimization (SL-BFGS)

! computationally & stochastically efficient gradient estimator

−→ source encoding for time-invariant systems

! memory requirements of gradient computation

−→ time-reversal based gradient computation

! slow convergence and local minima

−→ coarse-to-fine multigrid schemes

! computational resources

−→ runs on single GPU, can utilize multiple GPUs
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Pérez-Liva, Herraiz, Ud́ıas, Miller, Cox, Treeby 2017. Time domain

reconstruction of sound speed and attenuation in ultrasound computed

tomography using full wave inversion, JASA.

Challenges and solutions for 3D:

! 2 x nsrc wave simulations per gradient

−→ stochastic quasi-newton optimization (SL-BFGS)

! computationally & stochastically efficient gradient estimator

−→ source encoding for time-invariant systems

! memory requirements of gradient computation

−→ time-reversal based gradient computation

! slow convergence and local minima

−→ coarse-to-fine multigrid schemes

! computational resources

−→ runs on single GPU, can utilize multiple GPUs



3D Time Domain FWI for Breast USCT

Starting point:
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3D FWI: Setup

• color range 1435-1665 m/s

• 3D breast phantom at 0.5mm resolution, 1024 sources and receivers

• 442× 442× 222 voxel, 3912 time steps

Yang Lou et al. Generation of anatomically realistic numerical phantoms

for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/

https://anastasio.wustl.edu/downloadable-contents/oa-breast/


Starting point in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• single grid

• SGD

• normal single source gradient estimator



3D FWI in 24h on desktop with single GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 4 GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



3D FWI in 24h on cluster with 16 GPU

color range 1435 to 1665 m/s color range -50 to +50 m/s

• multi-grid with 3 level, coarsening factor 2

• SL-BFGS, slowness transform, prog. iter averaging

• time-reversal based source encoding gradient estimator



Summary

• imaging has broad range of applications

• mathematically: inverse problem of reconstructing distributed

quantities from indirect observations

• mathematical modeling, (solving) PDEs, numerical optimization

• challenges: large-scale, optimization, uncertainty quantification,

compressed sensing, dynamic/spectral imaging

• stable solution requires a-priori information

• hot topic: deep learning
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Thank you for your attention!

Der Sarkissian, L, van Eijnatten, Colacicco, Coban, Batenburg, 2019.

A Cone-Beam X-Ray CT Data Collection Designed for Machine Learning,

Scientific Data.

Hauptmann, Arridge, L, Muthurangu, Steeden, 2018. Real-time

cardiovascular MR with spatio-temporal artifact suppression using deep

learning - proof of concept in congenital heart disease, Magnetic

Resonance in Medicine.

L, Huynh, Betcke, Zhang, Beard, Cox, Arridge, 2018. Enhancing

Compressed Sensing 4D Photoacoustic Tomography by Simultaneous

Motion Estimation, SIAM Journal on Imaging Sciences.

L, Pérez-Liva, Treeby, Cox, 2021. High Resolution 3D Ultrasonic Breast

Imaging by Time-Domain Full Waveform Inversion, Inverse Problems.
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