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And what do you do for a living?

(a) Modern CT scanner (b) CT scan of a patient’s lung

Source: Wikimedia Commons
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Computational Imaging @ CWI

e headed by Tristan van Leeuwen, 18 members

e mathematics, computer science, (medical) physics & engineering
e advanced computational techniques for 3D imaging

e (inter-)national collaborations from science, industry & medicine
e one of the two main developers of the ASTRA Toolbox

e FleX-ray Lab: custom-made, fully-automated X-ray CT scanner
linked to large-scale computing hardware
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Imaging Across Disciplines

Observational astronomy
Life and material science
microscopy

Medical imaging

CT, MRI, US, PET, SPECT...
Geophysical imaging
(electrical) resistivity, seismic
(ground-penetrating) radar...
Remote sensing
military/intelligence,

earth/climate science

Industrial process imaging

Source: Wikimedia Commons
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Mathematical Imaging: Reconstruct spatially distributed of quantities

of interest from indirect observations through algorithms derived from

rigorous mathematics.



Imaging: An Inverse Problem

Inverse problem: Recover unknowns u (image) from data f via

f=AU)+¢

e Forward operator A solution of PDE modelling underlying physics.
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Inverse problem: Recover unknowns u (image) from data f via
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e Forward operator A solution of PDE modelling underlying physics.

e Typical inverse problems are ill-posed.
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e Forward operator A solution of PDE modelling underlying physics.
e Typical inverse problems are ill-posed.

e Stable solution requires a-priori information on u.
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Overview Inverse Problems / Imaging

mathematical modeling:
physics, PDEs, approximations (s V4 palx) + ps(x)) (x: 5)

— / / !
reconstruction/inference approach: - q(X’s)+“5(X)/e(s’ s')o(x, s')ds
regularization, statistical inference,

machine learning

theoretical analysis:
uniqueness, recovery conditions,
stability

reconstruction algorithm:

PDEs, numerical linear algebra,
optimization, MCMC

large-scale computing:
parallel computing, GPU computing

¥
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Current Challenges in Computational Imaging

core development for new modalities:

hybrid imaging

more from more:
multi-spectral, multi-modal, higher resolution

same from less:

low-dose, limited-view, compressed, dynamic

break the routine:
real-time, adaptive, explorative

quantitative imaging & uncertainty quantification

machine learning:



4 Waves of Image Reconstruction
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analytical model sparsit machine
y based P y learning

=== reconstruction error years and years
computation time

[4 Ravishankar, Ye, Fessler, 2020. Image Reconstruction: From
Sparsity to Data-adaptive Methods and Machine Learning, Proc
IEEE Inst Electr Electron Eng. 2020;108(1):86-109.
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Deep Learning in Image Reconstruction
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[ Ravishankar, Ye, Fessler, 2020. Image Reconstruction: From
Sparsity to Data-adaptive Methods and Machine Learning, Proc
IEEE Inst Electr Electron Eng. 2020;108(1):86-109.
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Deep Learning Challenges in Image Reconstruction

Application
e training data
e evaluation

e robustness

Conceptual
e scaling - dimensional reduction
e algorithm design / incorporate imaging physics
e un/self supervised

e task-adaptation (end-to-end)

Software
e coupling Cl - DL toolboxes

e real-time imaging
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Training Data for Deep Learning

for algorithm development?

v lot's of large, open, bench-mark data collections for standard
applications of deep learning (e.g., MNIST)

o few suitable imaging data sets (e.g., fastMRI)
I hardly any suitable projection data sets for X-ray CT

I' I clinical data sets are extra hard to get
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Training Data for Deep Learning

for algorithm development?

v lot's of large, open, bench-mark data collections for standard
applications of deep learning (e.g., MNIST)

o few suitable imaging data sets (e.g., fastMRI)
I hardly any suitable projection data sets for X-ray CT

I' I clinical data sets are extra hard to get

for real applications?
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Cone Beam Computed Tomography (CBCT)

Circular cone beam scanning geometry

e common geometry for lab CTs

e certain advantages in medical imaging

N

off-centered

object \ — :

T

S~
Source

Detector
fy

The missing cone region

(a) (b)

taken from: Choi & Baek, "A new method to reduce cone beam artifacts by optimal combination

of FDK and TV-IR images,” Proc. SPIE 10574, Medical Imaging 2018.



Deep Learning for Clinical CBCT

Public Private Partnership with Planmeca & AMC

e CBCT increasingly important in clinical applications
e tedious and time-consuming task: segmentation — deep learning?

e artifacts impair usability compared to conventional CT

e most challenging: training data acquisition
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Deep Learning for Skull Segmentation from CBCT

e 5 anthropomorphic head phantoms

e scans with clinical CBCT and micro-CT

e semi-manual segmentation from micro-CT as gold standard




Deep Learning for Skull Segmentation from CBCT

e full 3D volume too large for DNNs

e comparison of different dimension-reduction strategies

e impact on particular anatomical structures

@ Minnema, Wolff, Koivisto, L, Batenburg, Forouzanfar, van Eijnatten,
2021. Comparison of convolutional neural network training strategies for
cone-beam CT image segmentation, Computer Methods and Programs in
Biomedicine 207.



Deep Learning for Skull Segmentation fr CBCT

Difference between surface extracted from MS-D-Net segmented CBCT
vs micro-CT-based ground truth segmentation



FleX-ray Lab @ CWI

Source Detector

e custom-built (by TESCAN XRE), fully-automated, highly flexible

e linked to large-scale computing hardware

e Aim: Proof-of-concept experiments directly accessible to
mathematicians and computer scientists.



CBCT Data Collection for Machine Learning

42 Walnuts:

e natural inter-population variability

e hard shell, a softer inside, air filled
cavities
e variety of large-to-fine-scale features

proxy for human head

42 3D samples = a lot of 2D data




CBCT Data Collection for Machine Learning

we provide

e this (and other) data sets on zenodo.org, community " CI-CWI"

e MATLAB and Python scripts for reading, pre-processing and image
reconstruction on github.com/cicwi/WalnutReconstructionCodes

@ Der Sarkissian, L, van Eijnatten, Colacicco, Coban, Batenburg, 2019.
A Cone-Beam X-Ray CT Data Collection Designed for Machine Learning,
Scientific Data 6(1).


https://zenodo.org/communities/ci-cwi/
https://github.com/cicwi/WalnutReconstructionCodes

Deep Learning for High Cone-Angle Artifact Reduction

As T

@ Minnema, van Eijnatten, Der Sarkissian, Doyle, Koivisto, Wolff,
Forouzanfar, L, Batenburg, 2021. Efficient high cone-angle artifact
reduction in circular cone-beam CT using deep learning with

geometry-aware dimension reduction, Phys. Med. Biol. 66.



Geometry-Aware Dimension Reduction

Projection data

3en) Image reconstruction

f(s, z, 8) SN[ T
2/ ~~o
? / y \\
! ! 2 ““
! . ) X
(]
Angle-by-angle Angle-by-angle
projection acquisition backprojection (FDK)
y z5 2DCNN z5 ————
FDK i . - z-by-z .
Cartelsri]:; ! slice ;g g slice
Projection | Y™ 2 extraction 22— > > sta\cklng Reconstructed
dat % 5% T - volume
ata y e z1 < y — - ZL —y
4 Cartesian slice-based artifact reduction By

z Proposed artifact reduction ~Z

h > 2D CNN

> < -by- X
s . , 0-by-6
FDK into o Re-sampling
radial slices into Cartesian
—_— volume
S




Deep Learning for High Cone-Angle Artifact Reduction

U-Net U-Net MS-D Net MS-D Net

Input - FDK Coronal Proposed Coronal Proposed

Target IR approach

[1 Minnema et al., 2021. , Phys. Med. Biol. 66.



Deep Learning Challenges in Image Reconstruction

Application
e training data
e evaluation

e robustness

Conceptual
e scaling - dimensional reduction
e algorithm design / incorporate imaging physics
e un/self supervised

e task-adaptation (end-to-end)

Software
e coupling Cl - DL toolboxes

e real-time imaging
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Different Route: Neuronal Network Filtered Backprojection

FBP is 1D data filter followed by backprojection: Xegp = A*(f * y)
NN-FBP: non-linear combi of FBP for different filters f;

fy Yo
fy W,y

;
f W3

f3

learn convolution filters and weights from training data

@ Pelt, Batenburg, 2013. Fast Tomographic Reconstruction from Limited
Data Using Artificial Neural Networks, IEEE Image Processing, 22 (12).



Different Route: Neuronal Network Filtered Backprojection

FBP is 1D data filter followed by backprojection: Xegp = A*(f * y)
NN-FBP: non-linear combi of FBPs for different filters f;

FBP, all projections FBP, 5% NN-FBP, 5%
v comp. efficient v few trainable parameters  /lot's of training data

@ Pelt, Batenburg, 2013. Fast Tomographic Reconstruction from Limited
Data Using Artificial Neural Networks, IEEE Image Processing, 22 (12).



Going 3D: NN-FDK

volume of 1024 x 1024 x 1024

FDK| ‘ SIRT. NN-FDK

reconstruction time:
28s (FDK) 3225s (SIRT) 76s (NN-FDK) 382s (U-net) 809s (MSD-net)

MSD-net U-net

1024

I

@ Lagerwerf, Pelt, Palenstijn, Batenburg, 2020. A Computationally
Efficient Reconstruction Algorithm for Circular Cone-Beam Computed
Tomography Using Shallow Neural Networks , J. Imaging 2020, 6(12).



NN-FDK for High Resolution & High Throughput in 3D

(a) FDK (b) SIRT+, 200 iter (c) NN-FDK, 4 filter (d) MSD-net

similar accuracy as iterative reconstruction at fraction of run time short
training time; scales up to 40963

@ Lagerwerf et al., 2020. A Computationally Efficient Reconstruction
Algorithm for Circular Cone-Beam Computed Tomography Using Shallow
Neural Networks , J. Imaging 2020, 6(12).



Quantitative Evaluation of Deep Learning-Based Image Reconstruction

Learned PD ISTA U-Net U-Net MS-D-CNN CINN iCTU-Net Ground truth

Number of angles
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@ Leuschner et al., 2021. Quantitative Comparison of Deep Learning-Based
Image Reconstruction Methods for Low-Dose and Sparse-Angle CT
Applications, J. Imaging, 7(3).



Deep Learning Challenges in Image Reconstruction

Application
e training data
e evaluation

e robustness

Conceptual
e scaling - dimensional reduction
e algorithm design / incorporate imaging physics
e un/self supervised

e task-adaptation (end-to-end)

Software
e coupling Cl - DL toolboxes

e real-time imaging
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-the-Fly Machine Learning for Unique Objects

Improve resolution on single object CT reconstruction
e with same scanner

e with limited increase in computation and scan time

@ Hendriksen, Pelt, Palenstijn, Coban, Batenburg, 2019. On-the-Fly
Machine Learning for Improving Image Resolution in Tomography, Appl.
Sci. 2019., 9, 2445

image sources: Saadatfar et al, 2009; Ketcham et al, 2001



Zooming & Region of Interest Tomography
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On-the-Fly Resolution Improvement Pipeline

full view (1) and ROI acquisition (2)
e image reconstruction (3), (5)

e preparing training data (4)

training (6)

improving resolution (7)
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On-the-Fly Image Improvement Results

Low-resolution High-resolution Method A Method B Cubic
reconstruction reconstruction 9 slices up-sampling

Oatmeal

Oatmeal
(zoomed)



Self-Supervised Image Denoising
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@ Lehtinen, Munkberg, Hasselgren, Laine, Karras, Aittala, Aila, 2018.
Noise2Noise: Learning image restoration without clean data, Proc 35th Int
Conf Mach Learn 80, PMLR.

@ Batson and Royer, 2019. Noise2Self: Blind denoising by self-supervision,
Proc 36th Int Conf Mach Learn 97, PMLR.



Self-Supervised Learning for Tomography: Noise2Inverse

Acquire sinogram Split sinogram Train Noise2Inverse
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@ Hendriksen, Pelt, Batenburg, 2020. Noise2inverse: Self-supervised deep
convolutional denoising for tomography, IEEE TCl.
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Self-Supervised Learning for Tomography: Noise2Inverse

FBP Total variation  Deep Image
reconstruction  minimization Prior

Ground truth

Noise2Inverse Supervised

PSNR: 10.8 21.2 24.0 26.2 26.5
FBP-Equivalent dose*: 1K 11K 21K 36K 37K

PSNR: 45.7 44.6 45.5 46.3
* Incident photon count at which FBP obtains same PSNR. [absorption of sample=10%]

@ Hendriksen, Pelt, Batenburg, 2020. Noise2inverse: Self-supervised deep
convolutional denoising for tomography, IEEE TCI.
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Noise2lnverse on Dynamic Synchrotron Data

—
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Horizontal cross-section
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TALES 1§
GridRec (T=69) Paganin+GridRec (T=69) Noise2Inverse (T=69) GridRec Paganin  Noise2Inverse

+Gridrec

ﬁ Hendriksen et al., 2021. Deep denoising for multi-dimensional
synchrotron X-ray tomography without high-quality reference data,

Scientific Reports.



Noise2lnverse on

Vertical cross-section

Paganin+GridRec (T=69) Noise2Inverse (T=69)

@ Hendriksen et al., 2020. Deep denoising for multi-dimensional
synchrotron X-ray tomography without high-quality reference data,

Scientific Reports.



Reflectivity-Based Ultrasonic Imaging

Public Private Partnership with ApplusRTD

2D US imaging with linear arrays: TT‘“’""”)"‘-“,.’" 7Py
p e .. . pi = [z, )"
v~ non-ionizing radiation, mobile, low

operating costs z Imagng domain

T

! non-linear problem, low image quality,
interpretation

Typical workflow:

1. data pre-processing (denoising, filtering,
deconvolution)

2. image formation via beamforming ‘
(Delay-And-Sum) I

3. image post-processing (e.g. image ‘
enhancement or segmentation)




Ultrasonic Imaging Using End-To-End Deep Learning

Key ideas:
e Mapping from acoustic properties to data is non-linear and include
complicated wave-matter interactions

e Delay-And-Sum is localizing linear back-projection approximating
underlying wave physics

e DNNs can correct it and exploit data information end-to-end

@ / m = 3D/2D filter with weight standardization

@ / ﬁ = 3D/2D feature map, followed by Group Norm



Ultrasonic Imaging Using End-To-End Deep Learning

(a) target (b) DAS clean (c) DAS noisy
sub-sampled

(d) three-step (e) two-step (f) end-to-end

@ Pilikos, Horchens, Batenburg, van Leeuwen, L, 2020. Fast ultrasonic
imaging using end-to-end deep learning, IEEE International Ultrasonics

Symposium.



gle Plane-Wave Imaging Using End-To-End Deep Learnin

N

N
o ultrafast ultrasound imaging via plane waves X XXX AK A
e Embed Stolt’s FK migration end-to-end
1 PW, FK migration 75 PWs, FK migration 1 PW, image-to-image 1 PW, proposed method

Oepen (mm
Deptn mm)

@ Pilikos, de Korte, van Leeuwen, L, 2021. Single Plane-Wave Imaging
using Physics-Based Deep Learning, IEEE International Ultrasonics

Symposium, arXiv:2109.03661.



Deep Learning Challenges in Image Reconstruction

Application
e training data
e evaluation

e robustness

Conceptual
e scaling - dimensional reduction
e algorithm design / incorporate imaging physics
e un/self supervised

e task-adaptation (end-to-end)

Software
e coupling Cl - DL toolboxes

e real-time imaging
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ASTRA Toolbox: HPC Building Blocs for CT

e open source software, developed by CWI and Univ. Antwerp

e provides scalable, high-performance GPU primitives for tomography

flexible with respect to projection geometry

back-end in the Operator Discretization Library (ODL) software

-\

Low-level
control

-\
Scalability CPU
-\

Integration into Deep Learning frameworks via

C/C++ interface

e Operator Discretization Library (ODL) software

e Tomosipo



Summary & Outlook

e computational imaging will always keep us busy

e deep learning can help us to keep up

e translation is not trivial

e getting training data for real applications is hard work

e self/un-supervised training maybe viable alternative

e combining analytical methods with data or image domain CNNs

e integrating image formation end-to-end
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Thanks for your attention!

e computational imaging will always keep us busy

e deep learning can help us to keep up

e translation is not trivial

e getting training data for real applications is hard work

e self/un-supervised training maybe viable alternative

e combining analytical methods with data or image domain CNNs

e integrating image formation end-to-end
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U-Net Type Encoder-Decoder Networks

§ o= e =
oo — S prd
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Great results for many applications, but
! detected features have to be copied to deeper layers

! layers are wide, leading to many convolutions
! decoder cannot be used to improve encoder

Better: reuse features, fewer convolutions, mix decoder and encoder

ﬁ Ronneberger, Fischer, Brox, 2015. U-Net: Convolutional Networks for
Biomedical Image Segmentation, MICCAI.



Mixed Scale Dense Network (MS-D-Net)

e densely connected conv layers

e differently dilated convolutions to mix spatial scales

\

H‘HF\H!FT\\ mﬂ\k &

ﬁ Pelt, Sethian, 2018. Mixed-scale dense network for image analysis, PNAS
115 (2) 254-259.

Felix.Lucka@cwi.nl Deep Learning in Computational Imaging 8 Nov 2021



Mixed Scale Dense Network (MS-D-Net)

e densely connected conv layers

o differently dilated convolutions to mix spatial scales

(a) (b)

@ Pelt, Sethian, 2018. Mixed-scale dense network for image analysis, PNAS
115 (2) 254-259.
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MS-D Net vs U-Net
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Number of parameters

try it yourself?

e pyTorch implementation:
https://github.com/ahendriksen /msd_pytorch

e stand-alone python implementation coming soon!


https://github.com/ahendriksen/msd_pytorch

