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H2020 Project: Novel PAT+USCT Mammography Scanner

Diagnostic information from optical and acoustic properties
• 512 US transducers on rotatable half-sphere

• 40 optical fibers for photoacoustic excitation

• 40 inserts for laser-induced US (LIUS)



H2020 Project: Partners



USCT Reconstruction Approaches

(c(x)−2∂2t −∆)pi (x , t) = si (x , t), fi = Mipi , i = 1, . . . , nsrc

Travel time tomography (TTT): geometrical optics approximation.

X robust & computationally efficient

! valid for high frequencies (→ attenuation), low res, data size

Reverse time migration (RTM): forward wavefield correlated in time

with backward wavefield (adjoint wave equation) via imaging condition.

X 2 wave simulations, better quality than TTT.

! approximation, needs initial guess, quantitative errors

Full waveform inversion (FWI): fit full model to all data.

X high res from little data, include constraints, regularization

! many wave simulations, non-convex PDE-constrained optimization.

time domain vs frequency domain methods



Time Domain Full Waveform Inversion

F (c)pi := (c−2∂2t −∆)pi = si , fi = Mi pi , i = 1, . . . , nsrc

min
c∈C

nsrc∑
i

D
(
fi (c), f δi

)
s.t. fi (c) = MiF

−1(c)si

gradient for first-order optimization via adjoint state method:

∇cD
(
f (c), f δ

)
= 2

∫ T

0

1

c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t) ,

where (c−2∂2t −∆)q∗ = s∗, s∗(x , t) is time-reversed data discrepancy

→ two wave simulations for one gradient
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Acoustic Wave Propagation: Numerical Solution

• Direct methods, such as finite-difference, pseudospectral,

finite/spectral element, discontinous Galerkin.

• Integral wave equation methods, e.g. boundary element

• Asymptotic methods, e.g., geometrical optics, Gaussian beams

k-Wave: k-space pseudospectral method solving the underlying

system of first order conservation laws.

• Compute spatial derivatives in Fourier space: 3D FFTs.

• Parallel/GPU computing leads to massive speed-ups.

• Modify finite temporal differences by k-space operator and

use staggered grids for accuracy and robustness.

• Perfectly matched layer to simulate free-space propagation.

B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox

for the simulation and reconstruction of photoacoustic wave

fields, Journal of Biomedical Optics.
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Numerical Phantoms

color range 1470 - 1650 m/s, resolution 0.5mm

Yang Lou et al. Generation of anatomically realistic numerical phantoms

for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/

https://anastasio.wustl.edu/downloadable-contents/oa-breast/


Numerical Phantoms

color range 1470 - 1650 m/s, resolution 1mm

Yang Lou et al. Generation of anatomically realistic numerical phantoms

for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/

https://anastasio.wustl.edu/downloadable-contents/oa-breast/


FWI Illustration in 2D

SOS ground truth c true

color range 1450 - 1670 m/s

• 1mm resolution

• 2222 voxel

• 836 voxels on surface (pink)

• TTT would need 8362

source-receiver combos for high res

result
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FWI Illustration in 2D: 64 Sensors, 64 Receivers

SOS reconstruction c rec

color range 1450 - 1670 m/s

reconstruction error c true − c rec

color range -50 - 50 m/s
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FWI Illustration in 2D: 32 Sensors, 32 Receivers

SOS reconstruction c rec

color range 1450 - 1670 m/s

reconstruction error c true − c rec

color range -50 - 50 m/s
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FWI Illustration in 2D: 16 Sensors, 16 Receivers

SOS reconstruction c rec

color range 1450 - 1670 m/s

reconstruction error c true − c rec

color range -50 - 50 m/s
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Challenges of High-Resolution FWI in 3D

min
c∈C

nsrc∑
i

D
(
fi (c), f δi

)
s.t. fi (c) = MiF

−1(c)si

∇cD
(
f (c), f δ

)
= 2

∫ T

0

1

c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t)

PAMMOTH scanner example:

• 0.5mm res: comp grid 560× 560× 300 voxel = 94M, ROI = 7M

• 1024 transducers, 4000 time samples (multiple sources);

Gradient computation:

• 1 wave sim: ∼30 min.

! 2 wave sim per source, nsrc = 1024 → 20 days per gradient.

stochastic gradient methods → 60 min per gradient

! storage of forward field in ROI: ∼ 200GB.

time-reversal based gradient computation → 5− 25GB.
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Stochastic Gradient Optimization

J := n−1src

nsrc∑
i

Di (c) := n−1src

nsrc∑
i

D
(
MiF

−1(c)si , f
δ
i

)
approx ∇J by |S|−1

∑
j∈S ∇Dj(c), S ⊂ {1, . . . , nsrc} predetermined.

→ incremental gradient, ordered sub-set methods

Instance of finite sum minimization similar to training in machine

learning. Use stochastic gradient descent (SGD):

• momentum, gradient/iterate averaging (SAV, SAGA), variance

reduction (SVRG), choice of step size, mini-batch size

• include non-smooth regularizers (SPDHG, SADMM)

• quasi-Newton-type methods, e.g., stochastic L-BFGS

Bottou, Curtis, Nocedal. Optimization Methods for Large-Scale Machine

Learning, arXiv:1606.04838.

Fabien-Ouellet, Gloaguen, Giroux, 2017. A stochastic L-BFGS approach

for full-waveform inversion, SEG.
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Gradient Estimates: Sub-Sampling vs Source Encoding

Computationally & stochastically efficient gradient estimator?

Source Encoding for linear PDE constraints:

Let ŝ :=
nsrt∑
i

wi si , f̂ δ :=
nsrt∑
i

wi f
δ
i , with E [w ] = 0, Cov[w ] = I ,

then E
[
∇
∥∥∥MF−1(c)ŝ − f̂ δ

∥∥∥2
2

]
= ∇

nsrc∑
i

∥∥MF−1(c)si − f δi
∥∥2
2

• related to covariance trace estimators

• Rademacher distribution (wi = ±1 with equal prob)

• add time-shifting for time-invariant PDEs → variance control

• can be turned into scanning strategy

Haber, Chung, Herrmann, 2012. An effective method for parameter

estimation with PDE constraints with multiple right-hand sides, SIAM J.

Optim.
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Stochastic Optimization Illustration

SOS reconstruction c rec L-BFGS

color range 1450 to 1670 m/s

reconstruction error c true − c rec

color range -10 to 10 m/s
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Stochastic Optimization Illustration

SOS reconstruction c rec SL-BFGS

color range 1450 to 1670 m/s

reconstruction error c true − c rec

color range -10 to 10 m/s
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Time-Reversal Gradient Computations

Avoid storage of forward fields!

(c(x)−2∂2t −∆)p(x , t) = s(x , t), in Rd × [0,T ]

∇cD = 2

∫ T

0

1

c(x)3

(
∂2p(x , t)

∂t2

)
q∗(x , t)

Idea: ROI Ω, supp(s) ∈ Ωc × [0,T ]. As p(x , 0) = p(x ,T ) = ∂tp(x , 0) =

∂tp(x ,T ) = 0 in Ω, p(x , t) can be reconstructed from p(x , t) on

∂Ω× [0,T ] by time-reversal (TR).

• store fwd fields on ROI boundary during forward wave simulation

• interleave backward (adjoint) simulation with TR of boundary data

• 3 instead of 2 wave simulations (unless 2 GPUs used).

• code up efficiently

• multi-layer boundary increases accuarcy for pseudospectral method

Felix.Lucka@cwi.nl TD-FWI for High-Res 3D USCT of the Breast 15the October 2019



Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 6: upsampled from 5.66mm.
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Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 3: upsampled from 2mm.



Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 2: upsampled from 1.41mm.



Multigrid Schemes

• easy due to regular grids in space

and time

• coarsening by 2: (in principle)

speed up of 16

• most basic multi-grid usage for

now: initialization

level 1: resolution 1mm



Utilizing Multiple GPUs

• average independent gradient estimates to reduce variance

• not be the best way to use multiple GPUs
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number of gradient evaluations
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Putting it all together

• 3D breast phantom at 0.5mm resolution, 1024 sources and receivers

• 442× 442× 232 voxel, 3912 time steps

• multi-grid with 8 levels, coarsening factor
√

2.

• SL-BFGS (40 iter, 2d 4h on highest level), source encoding, 2 GPUs

c true c rec c true − c rec

color range 1450 to 1670 m/s color range -50 to 50 m/s



Summary & Outlook

Summary:

• proof-of-concept studies of TD-FWI for high resolution 3D USCT

• stochastic L-BFGS with source encoding

• time reversal based gradient computation

• multi-grid initialization

Outlook:

• multi-GPU CUDA code

• realistic source/receiver modeling

• extension to acoustic attenuation, density, etc.

• validation on experimental data!
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Thank you for your attention!

L, Pérez-Liva, Treeby, Cox, 2019. Time-Domain Full Waveform

Inversion for High Resolution 3D Ultrasound Computed Tomography of

the Breast, in preparation.
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Influence of Noise

no noise
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Influence of Noise

SNR 30dB
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Influence of Noise

SNR 20dB
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Influence of Noise

SNR 10dB
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Influence of Noise
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Mathematical Modelling (simplified)

Quantitative Photoacoustic Tomography (QPAT)

radiative transfer equation (RTE) + acoustic wave equation

(v · ∇+ µa(x) + µs(x))φ(x , v) = q(x , v) + µs(x)

∫
Θ(v , v ′)φ(x , v ′)dv ′,

pPA(x , t = 0) = p0 := Γ(x)µa(x)

∫
φ(x , v)dv , ∂tp

PA(x , t = 0) = 0

(c(x)−2∂2t −∆)pPA(x , t) = 0, f PA = MpPA

Ultrasound Computed Tomography (USCT)

(c(x)−2∂2t −∆)pUS(x , t) = s(x , t), f US = MpUS

Step-by-step inversion

1. f US → c : acoustic parameter identification from boundary data.

2. f PA → p0: acoustic initial value problem with boundary data.

3. p0 → µa: optical parameter identification from internal data.


