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H2020 Project: Novel PAT4+USCT Mammography Scanner

Diagnostic information from optical and acoustic properties
e 512 US transducers on rotatable half-sphere

e 40 optical fibers for photoacoustic excitation
e 40 inserts for laser-induced US (LIUS)



H2020 Project: Partners
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USCT Reconstruction Approaches

(c(><)*28t2 — A)pi(x, t) = si(x, t), fi = M;p;, i=1,...,Nse

Travel time tomography (TTT): geometrical optics approximation.
v~ robust & computationally efficient
I valid for high frequencies (— attenuation), low res, data size

Reverse time migration (RTM): forward wavefield correlated in time
with backward wavefield (adjoint wave equation) via imaging condition.

v~ 2 wave simulations, better quality than TTT.
I approximation, needs initial guess, quantitative errors
Full waveform inversion (FWI1): fit full model to all data.
v high res from little data, include constraints, regularization
! many wave simulations, non-convex PDE-constrained optimization.

time domain vs frequency domain methods



Time Domain Full Waveform Inversion

F(c)pi = (c20; = A)pi = si, fi=Mipi, =1... 0sc

rcneltr:lZ’D (fi(c), f,-5) s.t. fi(c) = MiF~1(c)s;

gradient for first-order optimization via adjoint state method:

VD (f(c), ) = 2/0T C(i)3 (W) g (x,t)

where (c720? — A)q* = s*, s*(x, t) is time-reversed data discrepancy

— two wave simulations for one gradient
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Acoustic Wave Propagation: Numerical Solution

e Direct methods, such as finite-difference, pseudospectral,
finite/spectral element, discontinous Galerkin.

e Integral wave equation methods, e.g. boundary element

e Asymptotic methods, e.g., geometrical optics, Gaussian beams



Acoustic Wave Propagation: Numerical Solution

e Direct methods, such as finite-difference, pseudospectral,
finite/spectral element, discontinous Galerkin.

e Integral wave equation methods, e.g. boundary element.
e Asymptotic methods, e.g., geometrical optics, Gaussian beams.

k-Wave: k-space pseudospectral method solving the underlying
system of first order conservation laws.

e €

e Compute spatial derivatives in Fourier space: 3D FFTs.

e Parallel/GPU computing leads to massive speed-ups.

Modify finite temporal differences by k-space operator and
use staggered grids for accuracy and robustness.

Perfectly matched layer to simulate free-space propagation.

>

ﬁ B. Treeby and B. Cox, 2010. k-Wave: MATLAB toolbox NVIDIA
for the simulation and reconstruction of photoacoustic wave )
fields, Journal of Biomedical Optics.



Numerical Phantoms

ole

color range 1470 - 1650 m/s, resolution 0.5mm

@ Yang Lou et al. Generation of anatomically realistic numerical phantoms
for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/


https://anastasio.wustl.edu/downloadable-contents/oa-breast/

Numerical Phantoms

ole

color range 1470 - 1650 m/s, resolution 1mm

@ Yang Lou et al. Generation of anatomically realistic numerical phantoms
for photoacoustic and ultrasonic breast imaging, JBO, 2017.

https://anastasio.wustl.edu/downloadable-contents/oa-breast/


https://anastasio.wustl.edu/downloadable-contents/oa-breast/

FWI Illustration in 2D

SOS ground truth c*™e

e 1mm resolution
2222 voxel
e 836 voxels on surface (pink)

e TTT would need 8362
source-receiver combos for high res

result

color range 1450 - 1670 m/s
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FWI lllustration in 2D: 64 Sensors, 64 Receivers
SOS reconstruction ¢ reconstruction error ct¥¢ — crec
color range 1450 - 1670 m/s color range -50 - 50 m/s
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FWI Illustration in 2D: 32 Sensors, 32 Receivers

SOS reconstruction ¢ reconstruction error ct¥¢ — crec

color range 1450 - 1670 m/s color range -50 - 50 m/s
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FWI Illustration in 2D: 16 Sensors, 16 Receivers

SOS reconstruction ¢ reconstruction error ct¥¢ — crec

color range 1450 - 1670 m/s color range -50 - 50 m/s
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Challenges of High-Resolution FWI in 3D

Nsrc

rcnel(r:lZD (fi(c), f,-‘s) s.t. fi(c) = MiF~1(c)s;

V.D (f(c). %) _2/T : 1 (82%(;; t)) 7" (x, 1)

o c(x)?

PAMMOTH scanner example:

e 0.5mm res: comp grid 560 x 560 x 300 voxel = 94M, ROl = 7M
e 1024 transducers, 4000 time samples (multiple sources);

Gradient computation:

e 1 wave sim: ~30 min.
I 2 wave sim per source, ng. = 1024 — 20 days per gradient.

! storage of forward field in ROIl: ~ 200GB.
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Challenges of High-Resolution FWI in 3D

Nsrc

rcnel(r:lZD (fi(c), f,-‘s) s.t. fi(c) = MiF~1(c)s;

ven(i(e).1%) =2 T o (azg(txz’ ?)ate

0

PAMMOTH scanner example:

e 0.5mm res: comp grid 560 x 560 x 300 voxel = 94M, ROl = 7M
e 1024 transducers, 4000 time samples (multiple sources);

Gradient computation:

e 1 wave sim: ~30 min.

I 2 wave sim per source, ng. = 1024 — 20 days per gradient.
stochastic gradient methods — 60 min per gradient

! storage of forward field in ROIl: ~ 200GB.
time-reversal based gradient computation — 5 — 25GB.
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Stochastic Gradient Optimization

Nsrc Nsrc

T =gt Y Dile) =gt > D (MF(c)si, £)

approx V.J by [S|71 30,5 VDj(c), S C {1,...,nsc} predetermined.
— incremental gradient, ordered sub-set methods



Stochastic Gradient Optimization

Nsrc Nsrc

= Ngpe ZD = N ZD MF C)S,',f;-(;)

approx V.J by [S|71 30,5 VDj(c), S C {1,...,nsc} predetermined.
— incremental gradient, ordered sub-set methods

Instance of finite sum minimization similar to training in machine
learning. Use stochastic gradient descent (SGD):

e momentum, gradient/iterate averaging (SAV, SAGA), variance
reduction (SVRG), choice of step size, mini-batch size

e include non-smooth regularizers (SPDHG, SADMM)

e quasi-Newton-type methods, e.g., stochastic L-BFGS

@ Bottou, Curtis, Nocedal. Optimization Methods for Large-Scale Machine
Learning, arXiv:1606.04838.

@ Fabien-Ouellet, Gloaguen, Giroux, 2017. A stochastic L-BFGS approach

for full-waveform inversion, SEG.



Gradient Estimates: Sub-Sampling vs Source Encoding

Computationally & stochastically efficient gradient estimator?



Gradient Estimates: Sub-Sampling vs Source Encoding

Computationally & stochastically efficient gradient estimator?

Source Encoding for linear PDE constraints:

Nsrt Nsrt

Let §:= Z wis;, f0 .= Z W,'f;-(s, with  E[w] =0, Cov[w] =1,

then E [v HMF_I(C)§ - f‘sHj - Vi IMF(c)si — 2]

e related to covariance trace estimators
e Rademacher distribution (w; = 41 with equal prob)
e add time-shifting for time-invariant PDEs — variance control

e can be turned into scanning strategy

@ Haber, Chung, Herrmann, 2012. An effective method for parameter
estimation with PDE constraints with multiple right-hand sides, SIAM J.
Optim.



Stochastic Optimization lllustration

SOS reconstruction ¢ L-BFGS reconstruction error ct“¢ — crec

% ;
. i

s =

color range 1450 to 1670 m/s color range -10 to 10 m/s
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Stochastic Optimization lllustration

SOS reconstruction ¢ SL-BFGS reconstruction error ct“¢ — crec
}f" =
K
19

color range 1450 to 1670 m/s color range -10 to 10 m/s
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Time-Reversal Gradient Computations

Avoid storage of forward fields!

(c(x)720 = D)p(x, t) = s(x,t),  inRY x [0, T]
LS| ?p(x,t)\ .
VD = 2/0 =OE (81‘2 ) q*(x,t)

Idea: ROI Q, supp(s) € Q° x [0, T]. As p(x,0) = p(x, T) = 9¢p(x,0) =
Otp(x, T) =0in Q, p(x, t) can be reconstructed from p(x, t) on
0 x [0, T] by time-reversal (TR).

e store fwd fields on ROI boundary during forward wave simulation

e interleave backward (adjoint) simulation with TR of boundary data
e 3 instead of 2 wave simulations (unless 2 GPUs used).

e code up efficiently

e multi-layer boundary increases accuarcy for pseudospectral method
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Multigrid Schemes

e casy due to regular grids in space '

and time
e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 6: upsampled from 5.66mm.



Multigrid Schemes

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 5: upsampled from 4mm.



Multigrid Schemes

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 4: upsampled from 2.83mm.



Multigrid Schemes

—

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 3: upsampled from 2mm.



Multigrid Schemes

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 2: upsampled from 1.41mm.



Multigrid Schemes

e casy due to regular grids in space
and time

e coarsening by 2: (in principle)
speed up of 16

e most basic multi-grid usage for
now: initialization

level 1: resolution 1Imm



Utilizing Multiple GPUs

e average independent gradient estimates to reduce variance
e not be the best way to use multiple GPUs
x10%

5 T T T
| \—1 averages —2 average 4 averages\

L2 error

0 20 40 60 80 100
number of gradient evaluations



Putting it all together

e 3D breast phantom at 0.5mm resolution, 1024 sources and receivers
e 442 x 442 x 232 voxel, 3912 time steps

e multi-grid with 8 levels, coarsening factor V2.

e SL-BFGS (40 iter, 2d 4h on highest level), source encoding, 2 GPUs

true rec true rec

C C C —C

color range 1450 to 1670 m/s color range -50 to 50 m/s



Summary & Outlook

Summary:

e proof-of-concept studies of TD-FWI for high resolution 3D USCT
e stochastic L-BFGS with source encoding
e time reversal based gradient computation

e multi-grid initialization

Outlook:

e multi-GPU CUDA code
e realistic source/receiver modeling
e extension to acoustic attenuation, density, etc.

e validation on experimental data!
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@ L, Pérez-Liva, Treeby, Cox, 2019. Time-Domain Full Waveform
Inversion for High Resolution 3D Ultrasound Computed Tomography of

the Breast, in preparation.

ProToNICS?! _E PSRC @ @2

Engineering and Physical Sciences
Research Council NYVYOX n\"DlA.
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Thank you for your attention! ]

@ L, Pérez-Liva, Treeby, Cox, 2019. Time-Domain Full Waveform
Inversion for High Resolution 3D Ultrasound Computed Tomography of

the Breast, in preparation.

PHIOTONICS?! QS_R_C_ @ @z

Engineering and Physical Sciences
Research Council NYVYOX n\"DlA.
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Influence of Noise

no noise
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Influence of Noise

oy
L

SNR 30dB
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Influence of Noise

SNR 20dB
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Influence of Noise

SNR 10dB
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Influence of Noise

x10%

3

'—SNR Inf —SNR 30dB —— SNR 20dB — SNR 10dB|

L2 error

15

0.5 ‘
0 20 40 60 80 100 120 140 160 180 200

number of gradient evaluations
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Mathematical Modelling (simplified)

Quantitative Photoacoustic Tomography (QPAT)
radiative transfer equation (RTE) + acoustic wave equation

(v Vo pa(x) + ps(x)) ¢(x, v) = q(x, v) + pis(x) / O(v, V)g(x, v')dv',
PAx,t = 0) = poi=T(hs() [ o). Bup™ (it =0) =0
(c(x)720%? — A)p™(x,t) =0, fPA = mpMA
Ultrasound Computed Tomography (USCT)

(c(x)720%? — A)pY>(x, t) = s(x, t), U = mpYs
Step-by-step inversion

1. fUS — c: acoustic parameter identification from boundary data.
2. fPA — po: acoustic initial value problem with boundary data.

3. po — pa: optical parameter identification from internal data.



