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Sparsity Constraints in Inverse Problems

Current trend in high dimensional inverse problems: Sparsity constraints.

» Total Variation (TV) imaging: Sparsity constraints on the gradient of the
unknowns.

» Compressed Sensing: High quality reconstructions from a small amount of
data, if a sparse basis/dictionary is a-priori known (e.g., wavelets).

Some nice images here!

Felix Lucka (felix.lucka@uni-muenster.de)
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Sparsity Constraints in Inverse Problems

Commonly applied formulation and analysis by means of variational
regularization, mostly by incorporating L1-type norms:

flo = argmin {||m —Aul}+a|D u|1}
ueR"?
assuming additive Gaussian i.i.d. noise ~ N(0, o?)

Notation:
» m € R*: The noisy measurement data given
» u € R": The unknowns to recover w.r.t. the chosen discretization
» A c RF*": Discretization of the forward operator w.r.t. the domains of u
and m.

» D € R'™": Discrete formulation of the mapping onto the (potentially)
sparse quantity.

Felix Lucka (felix.lucka@uni-muenster.de)
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Sparsity Constraints in Inverse Problems

Sparsity constraints relying on L1-type norms can also be formulated in the
Bayesian framework.
> Likelihood model:
M=Ayte S
> Prior model:
Por(1) o exp (=X |D ul1)
> Resulting posterior:
Ppost(u|m) o< exp (—ﬁ”m —A uH% —A|D u|1)

pi(m|u) < exp (7# |Im— A uH%)

(2) exp (—3llull3) (b) exp (—[ul1) () 1/(1+u?)

Felix Lucka (felix.lucka@uni-muenster.de)



Likelihood:
exp (—ﬁ m— AuH%)

Prior: exp (= |u|1) Posterior: exp (—52z|/m — Aull3 — X |ul1)

202

(X via discrepancy principle)
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Sparsity Constraints in Inverse Problems

Direct correspondence to variational regularization by maximum
a-posteriori-estimation (MAP) inference strategy:

fimap := argmax  ppost (u|m)
ueRn

1
= argmax {exp (—ﬁﬂm —Aulz—X|D u|1)}

ueRn

=argmin {Hm —Aul3+20°X|D u|1}
u€Rn

= Properties of MAP estimate (e.g., discretization invariance) are well
understood.

Felix Lucka (felix.lucka@uni-muenster.de)
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Sparsity Constraints in Inverse Problems

But there is more to Bayesian inference:

» Conditional mean-estimates (CM) > Generalized Bayes estimators

v

» Confidence intervals estimates Marginalization
» Conditional covariance estimates > Model selection or averaging

> Histogram estimates

v

Experiment design
Influence of sparsity constraints on these quantities: Less well understood.
ﬁ M. Lassas and S. Siltanen, 2004.

Can one use total variation prior for edge-preserving Bayesian inversion?

ﬁ M. Lassas, E. Saksman, and S. Siltanen, 2009.
Discretization invariant Bayesian inversion and Besov space priors.

ﬁ V. Kolehmainen, M. Lassas, K. Niinimaki, and S. Siltanen, 2012.
Sparsity-promoting Bayesian inversion.

Felix Lucka (felix.lucka@uni-muenster.de)
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Sparsity Constraints in Inverse Problems

Key issue

Examining L1-type priors might help to further understand the relation between
variational regularization theory and Bayesian inference!

Key problem

Bayesian inference relies on computing integrals w.r.t. high-dim. posterior pyost.
Standard Monte Carlo integration techniques break down for ill-posed,
high-dimensional problems with sparsity constraints.

This talks summarizes partial results from:

F. Lucka, 2012.
Fast MCMC sampling for sparse Bayesian inference in high-dimensional
inverse problems using L1-type priors
submitted to Inverse Problems; arXiv:1206.0262v1

Felix Lucka (felix.lucka@uni-muenster.de)
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Monte Carlo Integration in a Nutshell

BIF00L = [ 7(x)pl) dx

» Traditional Gauss-type quadrature:
Construct suitable grid {x;}i, w.r.t w(x) := p(x) and approximate by

ZIK:I wif(x).

= Grid construction and evaluation infeasible in high dimensions.

» Monte Carlo integration idea:
Generate suitable grid {x;}i, w.r.t p(x) by drawing x; ~ p(x) and
approximate by * Z,K:I f(x;). By the Law of large numbers:
K
K—oo
E 3000 "S5 B 100 = [ £ pl) dx
i=1
in L1 with rate O(K ~*/?) (independent of n).

Sampling for L1-type Priors

9

Felix Lucka (felix.lucka@uni-muenster.de)
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Markov Chain Monte Carlo

Not able to draw independent samples?
~» With {x;}; being an ergodic Markov chain, it still works!

Markov chain Monte Carlo (MCMC) methods are algorithms to construct such a
chain:

» Huge number of MCMC methods exists.

> No “universal” method.

» Most methods rely on one two basic schemes:

> Metropolis-Hastings (MH) Sampling [Metropolis et al., 1953; Hastings, 1970]
> Gibbs Sampling [Geman & Geman, 1984]

» Posteriors from inverse problems seem to be “special”.

In this talk: Comparison between the most basic variants of MH and Gibbs
sampling for high-dimensional posteriors from inverse problem scenarios.

Felix Lucka (felix.lucka@uni-muenster.de)



Symmetric, Random-Walk Metropolis-Hastings Sampling

Given: Density p(x),x € R" to sample from.
Let ppro(z) be a symmetric density in R” and xo € R” an initial state. Define
burn-in size Ko and sample size K.
Fori=1,...,Ko + K do:
1 Draw z from ppro(z) and set y = xi—1 + z

P(y)
p(xi-1)
3 Draw 6 € [0, 1] from a uniform probability density.

2 Compute the acceptance ratio r =

4 If r>0, set x; =y, else set x; = xj_1.

Return xiy+1, .. -, XK.

> Requires one evaluation of p(x) and one sample from ppro per step, no “real”
knowledge about p is needed, not even normalization.
~ "“Black box" sampling algorithm.

» Most widely used.
» Good performance requires careful tuning of ppo.
» Basis for very sophisticated sampling algorithms.

» Simulated annealing for the global optimization works in the same way.



In this talk:

N H2 In)




Evaluate performance of a sampler via its autocorrelation function (acf):
Let g : R" = R', and g; := g(u;), i = 1,..., K, then

K—r1
R(T) = Gy S -len =) (lagTacwrt &)

—~length = 4 1 ——length = 4
—-length = 16 —length = 16
——length = 32 —length = 32

(a) Stochastic processes... (b) ...and their autocorrelation functions
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> A rapid decay of R(7) means that samples get uncorrelated fast.

» Temporal acf (tacf): acf rescaled
R*(t) := R(t/ts) for all t =i - ts,

by computation time per sample, ts:
i€{0,....,K—1}.

» Use g(u) := (v1, u), where vy is the largest eigenvector of the covariance
matrix of p(x) to test the “worst case”.

—-length = 4
——length = 16
—length = 32|

I

x‘%‘

1 —length = 4
——length = 16
—length = 32

0

(c) Stochastic processes...

(d) ...and their autocorrelation functions

14
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Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)

» Model of a charge coupled device (CCD) in 1D.

» Unknown light intensity @ : [0, 1] — R*, indicator on [1, 2].

> Integrated into k = 30 CCD pixels 15, 53] C [0,1].

> Noise is added.

» 0 is reconstructed on a regular, n-dim. grid.

» D is the forward finite difference operator with NB cond.

1 2
Ppost(u|m) o< exp —ﬁﬂm —Aulza =X |Dulx

I
0 0.‘2 0‘4 t 0‘,6 0.‘8 1 0 0‘.2 0.‘4 t 0‘6 0‘.5 1

(e) The unknown function @i(t) (f) The measurement data m

Felix Lucka (felix.lucka@uni-muenster.de)



Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)

1
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Figure: Autocorrelation plots R(7) for MH Sampler and n = 63.



Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)
1

n=127, A =280
n =255, A =400
n=511, A =560
n=1023, A =800

0.8

o R¥t) o
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Figure: Temporal autocorrelation plots R*(t) for MH Sampler.
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Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)

Results:
» Efficiency of MH samplers dramatically decreases when A or n increase.

» Even for moderate n, most inference procedures become infeasible.

What else can we do?
» More sophisticated variants of MH sampling?
» Sample surrogate hyperparameter models?

» Try out the other basic scheme: Gibbs sampling.

18
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Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)

Results:
» Efficiency of MH samplers dramatically decreases when A or n increase.

» Even for moderate n, most inference procedures become infeasible.

What else can we do?
» More sophisticated variants of MH sampling?
» Sample surrogate hyperparameter models?

» Try out the other basic scheme: Gibbs sampling.
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Single Component Gibbs Sampling

Given: Density p(x),x € R" to sample from.
Let xo € R" be an initial state. Define burn-in size Ky and sample size K.
Fori=1,... Ko+ K do:

1 Set x;j := xj_1.
2 Forj=1,...,ndo:

(i) Draw s randomly from {1,...,n} (random scan).
(i) Draw (x;)s from the conditional, 1-dim density p( - |(x;)[—g])-

Return xxg+1, ..., XK.

In order to be fast one needs to be able
1. to compute the 1-dim distributions fast and explicit.

2. to sample from 1-dim distributions fast, robust and exact.

Point 2. turned out to be rather nasty, involved and time consuming to
implement ~~ Details can be found in the paper.






Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)

1 :
Gibbs, A =100
—Gibbs, A = 200
0.8 —Gibbs, A = 400
0.6 R
=
X
0.4t g
0.2 B
—
—_— ]
0,
0 260 400 T 600 800 1000

Figure: Autocorrelation plots R(7) for Gibbs Sampler and n = 63.



Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)
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Figure: Temporal autocorrelation plots R*(t) for n = 63.



Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)

! —Gibbs, n =127, A =280
—Gibbs, n = 255, A = 400
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Figure: Temporal autocorrelation plots R*(t) for Gibbs Sampler



Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)

1

0.8

o R¥t) o

0.2F

— MH-lIso,
- - -RnGibbs,
— MH-Iso,
- --RnGibbs,
—MH-lIso,
- - -RnGibbs
—MH-lIso,
- --RnGibbs,

n=127, A =280
n=127, A =280
n =255, A =400
n =255, A =400 ||
n=>511, A =560
n =511, A =560
n =1023, A = 800
n=1023, A = 800 ||

10 t (sec) 10

Figure: Temporal autocorrelation plots R*(t).




Total Variation Deblurring Example in 1D (from Lassas & Siltanen, 2004)
New sampler can be used to address theoretical questions:

> Lassas & Siltanen, 2004: For A, o< /n+ 1, the TV prior converges to a
smoothness prior in the limit n — oco.

» MH sampling to compute CM estimate for n = 63, 255, 1023, 4095.

> Even after a month of computation time only partly satisfying results.

ureal
—n =63, K =500000, KO =200, t = 21m
——n =255, K=100000, k0 = 50, t = 16m
n=1023, K = 50000, k0 = 20, t = 45m
——n =4095, K = 10000, k0 = 20, t = 34m
——n = 16383, K =5000, k0 =20, t=1h 51m
—n = 65535, K = 1000, kO = 20, t = 3h 26m

Figure: CM estimate computed for n = 63, 255,1023, 4095, 16383, 65535 using Gibbs
sampler on a comparable CPU.



Image Deblurring Example in 2D

Unknown function & Measurement data m
» Gaussian blurring kernel

> Relative noise level of 10%

» Reconstruction using n = 511 x 511 = 261121.
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Image Deblurring Example in 2D

(a) 1h comp. time (b) 5h comp. time (c) 20h comp. time

Figure: CM estimates by MH sampler

27

Felix Lucka (felix.lucka@uni-muenster.de)



-
— — \\/ESTFALISCHE

WILHELMS-UNIVERSITAT
MONSTER Sampling for L1-type Priors

Image Deblurring Example in 2D

(a) 1h comp. time (b) 5h comp. time (c) 20h comp. time

Figure: CM estimates by Gibbs sampler

28
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Conclusions & Outlook

» MH is a “black-box sampler”. It may fail dramatically in specific scenarios.

» But this is not a general feature of MCMC!

> Gibbs sampler incorporate more posterior-specific information into the
sampling and perform way better.

» Promising results in dimensions larger than any previously reported use for
L1-type inverse problems (n > 1000000 still works...).

— Results challenge common beliefs about MCMC in general.

Work to do:
> Real applications: Sparse tomography using Besov space priors like in
[Kolehmainen, Lassas, Niinim&ki, Siltanen, 2012]
» Tackle theoretical questions, e.g., of how stair-casing in TV can be seen
from a Bayesian perspective.
» Comparison to more sophisticated variants of MH and Gibbs schemes.
> Generalization to arbitrary D in |Dul;.

29
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Thank you
for
your attention!

Full results and all details in:

F. Lucka , 2012.
Fast MCMC sampling for sparse Bayesian inference in high-dimensional
inverse problems using L1-type priors
submitted to Inverse Problems; arXiv:1206.0262v1

> More sampling methods. > Nasty details of the Gibbs sampler!

» 2D deblurring with n = 511> = 261121. » Implementation and code.

30
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