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The estimation of the activity-related ion currents by measuring the induced electromagnetic fields at the
head surface is a challenging and severely ill-posed inverse problem. This is especially true in the recovery
of brain networks involving deep-lying sources by means of EEG/MEG recordings which is still a challenging
task for any inverse method. Recently, hierarchical Bayesian modeling (HBM) emerged as a unifying frame-
work for current density reconstruction (CDR) approaches comprising most established methods as well as
offering promising new methods. Our work examines the performance of fully-Bayesian inference methods
for HBM for source configurations consisting of few, focal sources when used with realistic, high-resolution
finite element (FE) head models. The main foci of interest are the correct depth localization, a well-known
source of systematic error of many CDR methods, and the separation of single sources in multiple-source sce-
narios. Both aspects are very important in the analysis of neurophysiological data and in clinical applications.
For these tasks, HBM provides a promising framework and is able to improve upon established CDRmethods such
asminimumnormestimation (MNE) or sLORETA inmany aspects. For challengingmultiple-source scenarioswhere
the establishedmethods show crucial errors, promising results are attained. Additionally, we introduceWasserstein
distances as performance measures for the validation of inverse methods in complex source scenarios.

© 2012 Elsevier Inc. All rights reserved.

Introduction

Electroencephalography (EEG) andmagnetoencephalography (MEG)
recordings are used in a wide range of applications today and range
from clinical testing to cognitive science (Niedermeyer and Lopez da
Silva, 2004). One aim in using EEG and MEG is to reconstruct brain
activity by means of non-invasive measurements of the associated
bioelectromagnetic fields. This task involves challenging mathematical
problems. Simulating thefielddistributionon thehead surface for a given
current source in the brain is called the EEG/MEG forward problem (e.g.,
Hämäläinen et al., 1993; Sarvas, 1987). The reconstruction of the so-
called primary or impressed currents (a simplified source model, see de
Munck et al., 1988; Hämäläinen et al., 1993; Sarvas, 1987) is called the
EEG/MEG inverse problem. In its generic formulation, the inverse problem
lacks a unique solution, and infinitely many source configurations, often
with extremely different properties, can explain the measured fields. All
inversemethods rely on the use of a priori information on the source ac-
tivity to choose a particular solution from the set of likely solutions. This
a priori information can reflect computational constraints as well as
neurological considerations. Nevertheless, because the problem is
heavily under-determined, the results from different methods for the

same measurement data can still differ considerably. Consequently,
most methods work well for certain source configurations while failing
to recover other configurations. Therefore, a careful examination of the
performance of the methods for different source scenarios is mandato-
ry. This article focuses on the results of estimation methods based on a
certain class of inference strategies called hierarchical Bayesian modeling
(HBM). While we investigate source scenarios including multiple focal
primary currents that occur, e.g., in the analysis of evoked potentials
(Scherg and Buchner, 1993; Parkkonen et al., 2009) and specific scenarios
encountered in presurgical epilepsy diagnosis (Rampp and Stefan, 2007;
Rullmann et al., 2009; Stefan et al., 2003), the framework easily extends
to recover spatially more distributed sources encountered, e.g., in cogni-
tive neuroscience (Hämäläinen et al., 1993) or in other presurgical epi-
lepsy diagnosis scenarios (Ebersole and Ebersole, 2010; Rampp and
Stefan, 2007; Stefan et al., 2003; Tao et al., 2005). This work comprises
the results from a diploma thesis, Lucka (2011). In the following sections,
we will outline the development of HBM for EEG/MEG current density
reconstruction (CDR) and motivate our interest in scenarios where the
source activity results from networks of few and focal sources.

Inverse methods for EEG/MEG

From a mathematical point of view, the EEG/MEG inverse problem is
severely-ill-posed (Engl et al., 1996; Hämäläinen et al., 1993; Lucka,
2011). As a practical consequence, a variety of different approaches
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Reconstruction of brain activity by non-invasive measurement of induced
electromagnetic fields?

I (Presumably) under-determined

I Severely ill-conditioned

I Low SNRs

,
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Summary: The inverse problem is severely ill-posed.

Measurements alone are insufficient and unsuitable to determine solution.

=⇒ Incorporation of a-priori information about the solution in an explicit or
implicit way:

I Knowledge about general/specific brain activity?
I Integration of multimodal information (fMRI, DW-MRI, PET, NIRS)?
I Mathematical formulation?
I Computational implementation?

=⇒ Variety of inverse methods for EEG/MEG

My focus: Hierarchical Bayesian inference for current density reconstruction
(CDR).

,
,

Felix Lucka (felix.lucka@wwu.de)



w
is
se
n
le
be
n

W
W
U
M
ün
st
er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER 5 /52

Current Density Reconstruction

Lead-field matrix concept:
I L ∈ Rm×n; columns represent measurements at m sensors caused by the n

single current dipoles.
I Linear combination of the dipoles is represented by source vector s ∈ Rn.
I Measurements b ∈ Rm caused by s can then be calculated via:

b = L s

Infer s from b? Apparently ill-posed problem:
I n� m. =⇒ b = L s is under-determined.
I L inherits the bad condition of the continuous problem.
I Noise E ∼ N (0, σ2Id) is added to signal.

Common approaches:
I Variational regularization
I (Hierarchical) Bayesian inference
I Spatial scanning methods/beamforming

,
,

Felix Lucka (felix.lucka@wwu.de)



w
is
se
n
le
be
n

W
W
U
M
ün
st
er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER 5 /52

Current Density Reconstruction

Lead-field matrix concept:
I L ∈ Rm×n; columns represent measurements at m sensors caused by the n

single current dipoles.
I Linear combination of the dipoles is represented by source vector s ∈ Rn.
I Measurements b ∈ Rm caused by s can then be calculated via:

b = L s

Infer s from b? Apparently ill-posed problem:
I n� m. =⇒ b = L s is under-determined.
I L inherits the bad condition of the continuous problem.
I Noise E ∼ N (0, σ2Id) is added to signal.

Common approaches:
I Variational regularization
I (Hierarchical) Bayesian inference
I Spatial scanning methods/beamforming

,
,

Felix Lucka (felix.lucka@wwu.de)



w
is
se
n
le
be
n

W
W
U
M
ün
st
er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER 6 /52

Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise.

I B = L s + E b is now random vaiable B

I Compute probability density of B given s: plike(b|s) (likelihood)

,
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
plike(b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest. −→ Bayesian modeling:

I s is considered to be a random variable itself (s → S).

I Its distribution pprior (s) reflects a-priori assumptions/knowledge.

I Task of the prior: Render the estimation problem well-posed.
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
plike(b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior (s)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule:

ppost(s|b) =
plike(b|s)pprior (s)

p(b)

I Conditional distribution of S given B is called posterior distribution.

I Represents all information on S given the realization of B = b.

I Complete solution to the inverse problem in Bayesian Inference
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
plike(b|s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior (s)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule: ppost(s|b)

4. Exploit a-posteriori information by infering point estimates:

1. Maximum a-posteriori-estimate (MAP): ŝMAP := argmaxs∈Rn ppost(s|b).
Practically: High-dimensional optimization problem.

2. Conditional mean-estimate (CM): ŝCM := E [s|b] =
∫
Rn s ppost(s|b)ds.

Practically: High-dimensional integration problem.
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the
prior used for the inference based on
this data!

Sounds like...

...but can be formulated into a consistent, statistical reasoning by adding a new
dimension of inference: Hyperparameters and hyperpriors.

→ Parametric Empirical Bayesian inference

Top-down construction scheme → Hierarchical Bayesian modeling (HBM).
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Hierarchical Bayesian Modeling (HBM) for CDR: Overview

I Current trend in all areas of Bayesian inference.
I Further development weighted minimum norm schemes.
I Flexible framework for the construction of complex models with different

levels for the embedding of different qualitative and quantitative a-priori
information: Spatial, temporal, multimodal, functional, anatomical,
neuro-physiological...

I Adds an adaptive, data-driven model redcution element into the estimation.
I Embeds several heuristic approaches into sound mathematical framework.
I Comprises many former EEG/MEG methods like MNE, WMNE, LORETA,

sLORETA, FOCUSS, MCE,...
I Offers various new ways of inference: Full-MAP, Full-CM, γ-MAP, S-MAP,

VB

David Wipf and Srikantan Nagarajan.
A unified Bayesian framework for MEG/EEG source imaging.
Neuroimage, 44(3):947-66, February 2009
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Example: Hierarchical Bayesian Modeling of Focal Activity

Wanted: A prior promoting focal source activity.

First try:

I Take Gaussian prior with zero mean and covariance Σs = γ · Id, γ > 0
(Minimum norm estimation).

I Compute MAP or CM estimate (equal)!

ŝMAP : = argmax
s∈Rn

{
exp

(
− 1

2σ2
‖b − L s‖2

2 −
1

2γ
‖s‖2

2

)}
= argmin

s∈Rn

{
‖b − L s‖2

2 + σ2

γ
‖s‖2

2

}
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Example: Hierarchical Bayesian Model for Focal Activity

What went wrong?

I Gaussian variables = characteristic scale given by variance.
(not scale invariant)

I All sources have variance γ =⇒ Similar amplitudes are likely.

=⇒ Focal activity is very unlikely.

,
,
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Example: Hierarchical Bayesian Model for Focal Activity

Idea:

I Let sources at single locations i , i = 1, . . . , k have different variances γi .

I Let the data determine γi =⇒ New level of inference!

I γ = (γi )i=1,...,k are called hyperparameters.

I Bayesian inference: γ are random variables as well.

I Their prior distribution phyper (γ) is called hyperprior.

I Encode focality assumption into hyperprior:

I Focality: Nearby sources should a-priori not be mutually dependent.

I Focality: Most sources silent, few with large amplitude;

I No location preference for activity should be given a priori.

,
,
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I Let sources at single locations i , i = 1, . . . , k have different variances γi .
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I γ = (γi )i=1,...,k are called hyperparameters.

I Bayesian inference: γ are random variables as well.

I Their prior distribution phyper (γ) is called hyperprior.

I Encode focality assumption into hyperprior:

I γi should be stochastically independent.
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Example: Hierarchical Bayesian Model for Focal Activity

Idea:

I Let sources at single locations i , i = 1, . . . , k have different variances γi .

I Let the data determine γi =⇒ New level of inference!

I γ = (γi )i=1,...,k are called hyperparameters.

I Bayesian inference: γ are random variables as well.

I Their prior distribution phyper (γ) is called hyperprior.

I Encode focality assumption into hyperprior:

I γi should be stochastically independent.

I Sparsity inducing hyperprior, e.g., inverse gamma distribution.

I γi should be equally distributed.
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Example: Hierarchical Bayesian Model for Focal Activity

In formulas:

pprior (s|γ) ∼ N (0,Σs(γ)) , where Σs(γ) = diag (γi · Id3, i = 1, . . . , k)

phyper (γ) =
k∏

i=1

pi
hyper (γi ) =

k∏
i=1

phyper (γi ) =
k∏

i=1

βα

Γ(α)
γ−α−1
i exp

(
− β
γi

)
α > 0 and β > 0 determine shape and scale, Γ(x) denotes the Gamma function.

Joint prior: ppr (s,γ) = pprior (s|γ) phyper (γ)

Implicit prior: ppr (s) =

∫
pprior (s|γ) phyper (γ)dγ

=

∫
N (0,Σs(γ)) phyper (γ)dγ  “Gaussian scale mixture”

(actually a Student’s t-distribution with 2(α + 1) degrees of freedom)
,
,
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Example: Hierarchical Bayesian Model for Focal Activity

Posterior, general:

ppost(s,γ|b) ∝ plike(b|s) pprior (s|γ) phyper (γ)

Comparison: ppost(s|b) ∝ plike(b|s) pprior (s)

Posterior, concrete:

ppost(s,γ|b) ∝

exp

(
− 1

2σ2
‖b − L s‖2

2 −
k∑

i=1

(
1
2
‖si∗‖2 + β

γi
+
(
α + 5

2

)
ln γi

))
Analytical advantages...

I Energy is quadratic with respect to s
I Factorizes over γi ’s.

and disadvantages...
I Energy is non-convex w.r.t. (s,γ) (posterior is multimodal)

,
,

Felix Lucka (felix.lucka@wwu.de)



w
is
se
n
le
be
n

W
W
U
M
ün
st
er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER 18 /52

Excursus: Full-, Semi-, and Approximate Inversion

Two types of parameters −→ more possible ways of inference.

Full-MAP: Maximize ppost(s,γ|b) w.r.t. s and γ.

Full-CM: Integrate ppost(s,γ|b) w.r.t. s and γ.

γ-MAP: Integrate ppost(s,γ|b) w.r.t. s, and maximize over γ, first.
Then use ppost(s, γ̂(b)|b) to infer s. (Hyperparameter
MAP/Empirical Bayes)

S-MAP: Integrate ppost(s,γ|b) w.r.t. γ, and maximize over s.

VB: Assume approximative factorization
ppost(s, γ|b) ≈ p̂post(s|b) p̂post(γ|b); Approximate both with
distributions that are analytically tractable.

Focus of our work: Fully Bayesian inference.

,
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Starting Point for our Studies

I A specific HBM aims to recover source configurations consisting of few,
focal sources (introduced in Sato et al., 2004; further examined in
Nummenmaa et al., 2007; Wipf and Nagarajan, 2009; Calvetti et al., 2009)

I Calvetti et al., 2009 found promising first results for certain inference
strategies for deep-lying sources and the separation of multiple (focal)
sources.

Limitations of Calvetti et al., 2009 :

I Specific results were not convincing; reason unclear.

I No systematic examination; only two source scenarios.

I Head models insufficient.

Why are we interested in that?
(rhetorical question to switch to another talk in an elegant way...)

,
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Tasks and Problems for EEG/MEG in Presurgical Epilepsy Diagnosis

EEG/MEG in epileptic focus localization:

I Focal epilepsy is believed to originate from networks of focal sources.

I Active in inter-ictal spikes.

I Task 1: Determine number of focal sources (multi focal epilepsy?).

I Task 2: Determine location and extend of sources.

Unknown number and spatial extend of sources?
−→ Current density reconstruction (CDR).

Problems of established CDR methods:

I Depth-Bias: Reconstruction of deeper sources too close to the surface.

I Masking: Near-surface sources “mask“ deep-lying ones.

,
,
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Depth Bias: Illustration
One deep-lying reference source (blue cone) and minimum norm estimate (MNE,
Hämäläinen and Ilmoniemi, 1994).



Depth Bias: Illustration
One deep-lying reference source (blue cone) and sLORETA result
(Pascual-Marqui, 2002).



Masking: Illustration

Reference sources.



Masking: Illustration
MNE result and reference sources (green cones).



Masking: Illustration
sLORETA result and reference sources (green cones).
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Diploma Thesis and Neuroimage Paper (EEG only!)

Key question

Can Full-MAP and Full-CM for HBM overcome the
limitations (depth-bias, masking) of established CDR methods?

Work program:

I Implementation of Full-MAP and Full-CM inference for HBM with realistic,
high resolution Finite Element (FE) head models.

I Propose own algorithms for Full-MAP estimation.

I Introduction of suitable performance measures for validation of simulation
studies.

I Systematic examination of performance concerning depth-bias and masking
in simulation studies.
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Results Depth Bias: Illustration

One deep-lying reference source (blue cone) and Full-CM result.



Results Depth Bias: Illustration

One deep-lying reference source (blue cone) and Full-MAP result proposed by
Calvetti et al., 2009.



Results Depth Bias: Illustration

One deep-lying reference source (blue cone) and Full-MAP result proposed by us.



Results Masking: Illustration
Full-CM result and reference sources (green cones).



Results Masking: Illustration
Full-MAP result (by our algorithm) and reference sources (green cones).
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Systematic Studies: Summary

Study 1 (depth-bias):

I Reconstruction of single 1000 dipoles; random location and orientation.

I Reconstructions were compared using different performance measures.

I Specific examination of depth bias.

Study 2 (masking):

I Reconstruction of 1000 source configurations consisting of one near-surface
and one deep-lying dipole.

I Reconstructions were compared using a performance measure based on
optimal transport (called earth mover’s distance, a Wasserstein metric).

,
,

Felix Lucka (felix.lucka@wwu.de)



w
is
se
n
le
be
n

W
W
U
M
ün
st
er

WESTFÄLISCHE
WILHELMS-UNIVERSITÄT
MÜNSTER 34 /52

Systematic Studies: Summary

Results for Full-MAP and Full-CM estimation:

I Good performance in all validation measures.

I No depth bias.

I Good results w.r.t. orientation, amplitude and spatial extend.

I Full-MAP estimate (by our algorithm): Best results in every aspect
examined.

Full results:

Felix Lucka., Sampsa Pursiainen, Martin Burger,Carsten H. Wolters. 2012.
Hierarchical Bayesian Inference for the EEG Inverse Problem using Realistic
FE Head Models: Depth Localization and Source Separation for Focal
Primary Currents.
Neuroimage 61(4), 1364-1382.
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Conclusions, Diploma Thesis and Neuroimage paper

Key question

Can Full-MAP and Full-CM for HBM overcome the
limitations (depth-bias, masking) of established CDR methods?

Results

I Hierarchical Bayesian modeling used with realistic head modeling is a
promising framework for EEG CDR.

I Promising results for deep sources (no depth bias).

I Promising results for challenging multiple source scenarios (no masking).

F A promising tool for the analysis of neurophysiological data. F
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We addressed two questions that were posed in the outlook of the paper:
I EEG vs. MEG and EEG/MEG combination (EMEG):

I Do our findings also apply for MEG?
I Previously (e.g., Molins et al., 2008), the differences between EEG and

MEG have mainly been examined by established inverse methods. How
are things for fully-Bayesian inference for HBM?

I Realistic Head Model: Formerly, we used a simplified head model with a
homogenous inner brain (to facilitate the interpretation of the results).
Especially for EEG/MEG combination, the use of a realistic, individual and
anisotropic head model is mandatory.
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Model Setup: Modeling Pipeline
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Model Setup: Sensor Configuration
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Simulation Studies

Inverse Methods:
I Three fully-Bayesian HBM methods:

I Full-MAP estimates
I Full-CM estimates
I Full-NM (Near-Mean) estimates

I Minimum norm estimates (MNE) with different weightings (WMNE).

I sLORETA

Simulation studies (similar to Neuroimage paper):

1. Single dipole recovery −→ localization, focality, depth-bias.

2. Two dipole recovery −→ source separation.

Source configurations were reconstructed using

(a) EEG alone (b) MEG alone (c) EMEG data
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Exemplary Three Dipole Scenarios 1: HBM-NM Estimate, EEG alone



Exemplary Three Dipole Scenarios 1: HBM-NM Estimate, MEG alone



Exemplary Three Dipole Scenarios 1: HBM-NM Estimate, EMEG



Exemplary Three Dipole Scenarios 2: HBM-NM Estimate, EEG alone



Exemplary Three Dipole Scenarios 2: HBM-NM Estimate, MEG alone



Exemplary Three Dipole Scenarios 2: HBM-NM Estimate, EMEG



Exemplary Three Dipole Scenarios 3: HBM-NM Estimate, EEG alone



Exemplary Three Dipole Scenarios 3: HBM-NM Estimate, MEG alone



Exemplary Three Dipole Scenarios 3: HBM-NM Estimate, EMEG
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Biomag Results and Conclusions, EEG vs. MEG

Results:
I HBM methods and sLORETA do not show a depth bias in any modality.
I Weighting of MNE to avoid depth bias in all modalities is difficult and

comes at the cost of other draw-backs.
I The average localization performance (mean DLE) of HBM methods is

equal for EEG and MEG. For WMNE variants and sLORETA, it is better
for MEG.

I The mean EMD (localization + spatial extend) is better for EEG than
MEG for all methods, although the differences are differently pronounced.

Conclusions:
I Statements about localization properties of single modalities cannot be

made without a reference to the inverse method used. This is a feature of
the ill-posed nature of the EEG/MEG inverse problem.

I For all MNE variants and sLORETA, MEG offers a better localization
(DLE) of single dipoles while having a higher EMD =⇒ better localization
comes at the costs of a larger blurring.
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Biomag Results and Conclusions, EEG/MEG Combination

Results:
I The combination improves the average performance of all methods

(measured in EMD and DLE).
I The improvement of the EMD of HBM methods for multiple source

scenarios is larger than for established methods.
I The combination reduces variance and outliers in the error statistics.
I The depth localization does not always profit from combination, especially

if a single modality is very weak in that aspect.

Conclusions:
I EEG/MEG combination stabilizes and improves source reconstruction to a

considerable amount.
I Fully-Bayesian HBM methods profit from EEG/MEG combination especially

for source separation in multiple source scenarios. This further underlines
the potential of these methods for complex sources scenarios in real
applications.
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Outlook & Future Work

I Current focus: Processing of real data:
I combined AEP/AEF and SEF/SEP data;
I interictal epileptic activity;

I Practical aspects of EEG/MEG combination: Noise rescaling, volume
conductor calibration and sensor weighting.

I Temporal extension of our HBM methods.
I Generalization of the specific HBM

I to also recover more extented source scenarios;
I to model inhibintion, excitation and syncrony between brain areas;
I to incorporate mulitmodal information from, e.g., DW-MRI, PET,

SPECT, fMRI, NIRS;

I Comparison of HBM methods and EEG and MEG for extended source
configurations.

I Comparison to other HBM-based methods like variational Bayesian
approaches.
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Thank you

for your

attention!

Software used by our group:

I Registration: FSL,FAIR;

I Segmentation: FSL, CURRY;

I FEM Meshing: Tetgen, vgrid,
iso2mesh;

I FEM Computation: SimBio;

I Data Preprocessing: CURRY, BESA;

I Inverse computation: Matlab;

I Volume Visualization: SCIRun;

I Everything else & software integration:
Matlab;
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