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Reconstruction of brain activity by non-invasive measurement of induced
electromagnetic fields?

> (Presumably) under-determined

» Severely ill-conditioned

» Low SNRs

Felix Lucka (felix.lucka@wwu.de)
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Summary: The inverse problem is severely ill-posed.

Measurements alone are insufficient and unsuitable to determine solution.

= Incorporation of a-priori information about the solution in an explicit or
implicit way:
> Knowledge about general/specific brain activity?
> Integration of multimodal information (fMRI, DW-MRI, PET, NIRS)?
» Mathematical formulation?
» Computational implementation?

— Variety of inverse methods for EEG/MEG

My focus: Hierarchical Bayesian inference for current density reconstruction
(CDR).

Felix Lucka (felix.lucka@wwu.de)
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Current Density Reconstruction

Lead-field matrix concept:
» L € R™"; columns represent measurements at m sensors caused by the n
single current dipoles.
» Linear combination of the dipoles is represented by source vector s € R".
» Measurements b € R™ caused by s can then be calculated via:

b=1Ls

Felix Lucka (felix.lucka@wwu.de)
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Current Density Reconstruction

Lead-field matrix concept:
» L € R™"; columns represent measurements at m sensors caused by the n
single current dipoles.
» Linear combination of the dipoles is represented by source vector s € R".
» Measurements b € R™ caused by s can then be calculated via:

b=1Ls

Infer s from b? Apparently ill-posed problem:
> n> m. =—> b= Ls is under-determined.
» L inherits the bad condition of the continuous problem.
» Noise £ ~ N(0,0%Id) is added to signal.

Common approaches:
» Variational regularization
> (Hierarchical) Bayesian inference
» Spatial scanning methods/beamforming

Felix Lucka (felix.lucka@wwu.de)
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise.

» B=Ls+ & b is now random vaiable B

» Compute probability density of B given s: pike(b|s) (likelihood)

Felix Lucka (felix.lucka@wwu.de)
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
Piike(b]s).

2. Supplement information given by the data by a-priori information about the
parameters of interest. — Bayesian modeling:

> s is considered to be a random variable itself (s — S).
> Its distribution pprior(s) reflects a-priori assumptions/knowledge.

» Task of the prior: Render the estimation problem well-posed.

Felix Lucka (felix.lucka@wwu.de)
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Strategy of Bayesian Inference
1. Make stochastic model for the relation between parameters, data and noise:
piike(b]s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior(s)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule:

Ppost(s|b) = o(b)

» Conditional distribution of S given B is called posterior distribution.
> Represents all information on S given the realization of B = b.

» Complete solution to the inverse problem in Bayesian Inference

Felix Lucka (felix.lucka@wwu.de)
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Strategy of Bayesian Inference

1. Make stochastic model for the relation between parameters, data and noise:
piike(b]s).

2. Supplement information given by the data by a-priori information about the
parameters of interest: pprior(S)

3. Merge information before the measurement (prior) with the information
gained after performing the measurement (likelihood) by Bayes rule: ppost(s|b)

4. Exploit a-posteriori information by infering point estimates:
1. Maximum a-posteriori-estimate (MAP): Suap 1= argmax,cgn Ppost(s|b).
Practically: High-dimensional optimization problem.
2. Conditional mean-estimate (CM): 5cu := E [s|b] =[5, S Ppost(s|b)ds.
Practically: High-dimensional integration problem.

Felix Lucka (felix.lucka@wwu.de)
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

10

Felix Lucka (felix.lucka@wwu.de)
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the
prior used for the inference based on
this data!

Felix Lucka (felix.lucka@wwu.de)
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Empirical Bayesian Inference

Problem: Brain activity is too complex (or our
knowledge is too limited) to be
captured in a fixed but sufficiently
informative prior.

Solution: Let the same data determine the

prior used for the inference based on
this data!

Sds Iike...

10

Felix Lucka (felix.lucka@wwu.de)
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Empirical Bayesian Inference

Sounds like...
Problem: Brain activity is too complex (or our 2 e
knowledge is too limited) to be :
captured in a fixed but sufficiently
informative prior.
Solution: Let the same data determine the
prior used for the inference based on
this data!

...but can be formulated into a consistent, statistical reasoning by adding a new
dimension of inference: Hyperparameters and hyperpriors.

— Parametric Empirical Bayesian inference

Top-down construction scheme — Hierarchical Bayesian modeling (HBM).

10

Felix Lucka (felix.lucka@wwu.de)
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Hierarchical Bayesian Modeling (HBM) for CDR: Overview

>

Current trend in all areas of Bayesian inference.

» Further development weighted minimum norm schemes.

Flexible framework for the construction of complex models with different
levels for the embedding of different qualitative and quantitative a-priori
information: Spatial, temporal, multimodal, functional, anatomical,
neuro-physiological...

Adds an adaptive, data-driven model redcution element into the estimation.

» Embeds several heuristic approaches into sound mathematical framework.
» Comprises many former EEG/MEG methods like MNE, WMNE, LORETA,

sLORETA, FOCUSS, MCE,...
Offers various new ways of inference: Full-MAP, Full-CM, ~-MAP, S-MAP,
VB

David Wipf and Srikantan Nagarajan.
A unified Bayesian framework for MEG/EEG source imaging.
Neuroimage, 44(3):947-66, February 2009

Felix Lucka (felix.lucka@wwu.de)
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Example: Hierarchical Bayesian Modeling of Focal Activity

Wanted: A prior promoting focal source activity.

First try:

> Take Gaussian prior with zero mean and covariance ¥s =~ -Id, >0
(Minimum norm estimation).

» Compute MAP or CM estimate (equal)!

. 1 1 2)}
Suap : — argmax sexp | ———=||b—Lsl||5 — —]|s
o = argmax {exp (=516~ Lol — o Isl3

= argmin {||b —~Ls|3+ 072||5H§}
seRn

Felix Lucka (felix.lucka@wwu.de)



Example: Hierarchical Bayesian Modeling of Focal Activity

First try: NOT a focal reconstruction.
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Example: Hierarchical Bayesian Model for Focal Activity

(’”«7%»
N <“W
.

i

What went wrong?

> Gaussian variables = characteristic scale given by variance.
(not scale invariant)

> All sources have variance v = Similar amplitudes are likely.

— Focal activity is very unlikely.

Felix Lucka (felix.lucka@wwu.de)
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Example: Hierarchical Bayesian Model for Focal Activity
Idea:

> Let sources at single locations i, i = 1,..., k have different variances ~;.

> Let the data determine 7 = New level of inferencel!

» ~ = (7i)i=1,... .k are called hyperparameters.
> Bayesian inference: -y are random variables as well.

» Their prior distribution payper () is called hyperprior.

Felix Lucka (felix.lucka@wwu.de)
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Example: Hierarchical Bayesian Model for Focal Activity
Idea:

> Let sources at single locations i, i = 1,..., k have different variances ~;.

> Let the data determine 7 = New level of inferencel!

» ~ = (7i)i=1,... .k are called hyperparameters.
> Bayesian inference: -y are random variables as well.

» Their prior distribution payper () is called hyperprior.

» Encode focality assumption into hyperprior:

» Focality: Nearby sources should a-priori not be mutually dependent.
> Focality: Most sources silent, few with large amplitude;

» No location preference for activity should be given a priori.

Felix Lucka (felix.lucka@wwu.de)
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Example: Hierarchical Bayesian Model for Focal Activity
Idea:

> Let sources at single locations i, i = 1,..., k have different variances ~;.

> Let the data determine 7 = New level of inferencel!

» ~ = (7i)i=1,... .k are called hyperparameters.
> Bayesian inference: -y are random variables as well.

» Their prior distribution payper () is called hyperprior.

» Encode focality assumption into hyperprior:

> ~; should be stochastically independent.
> Focality: Most sources silent, few with large amplitude;

» No location preference for activity should be given a priori.

Felix Lucka (felix.lucka@wwu.de)
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Example: Hierarchical Bayesian Model for Focal Activity
Idea:

> Let sources at single locations i, i = 1,..., k have different variances ~;.

> Let the data determine 7 = New level of inferencel!

» ~ = (7i)i=1,... .k are called hyperparameters.
> Bayesian inference: -y are random variables as well.

» Their prior distribution payper () is called hyperprior.

» Encode focality assumption into hyperprior:

> ~; should be stochastically independent.

» Sparsity inducing hyperprior, e.g., inverse gamma distribution.

» No location preference for activity should be given a priori.

Felix Lucka (felix.lucka@wwu.de)
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Example: Hierarchical Bayesian Model for Focal Activity
Idea:

> Let sources at single locations i, i = 1,..., k have different variances ~;.

> Let the data determine 7; = New level of inferencel!

» ~ = (7i)i=1,... .k are called hyperparameters.
> Bayesian inference: -y are random variables as well.

» Their prior distribution payper () is called hyperprior.

» Encode focality assumption into hyperprior:

> ~; should be stochastically independent.

» Sparsity inducing hyperprior, e.g., inverse gamma distribution.
> ;i should be equally distributed.

Felix Lucka (felix.lucka@wwu.de)
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Example: Hierarchical Bayesian Model for Focal Activity

In formulas:

Porior (S|Y) ~ N (0,Zs()), where Yo(v)=diag(yi-Ids,i =1,...,k)
k K

k (a3
Phyper(7) = HPLyper(Vi) = HPhyper('Yi) = E % 7,'70‘71 exp (75)

i=1 i=1 '

o > 0 and 3 > 0 determine shape and scale, '(x) denotes the Gamma function.

Joint prior:  ppr(S,Y) = Pprior(S|Y) Phyper ()

Implicit prior:  ppr(s) = /pp,,-or(sh) Phyper(7Y)d~y

= /N(O, ¥5()) phyper(y)dy  ~~ “Gaussian scale mixture”

(actually a Student's t-distribution with 2(c 4 1) degrees of freedom)

Felix Lucka (felix.lucka@wwu.de)
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Example: Hierarchical Bayesian Model for Focal Activity
Posterior, general:

) Porior(sY) Phyper(7)
) Porior(s)

Ppost (s, Y| b) o< piike(bls
Comparison:  Ppost(S|b) o piike(bl|s
Posterior, concrete:

Ppost (s, y|b) o

k /1 2
1 slisi="+ 8
exp (M||bLs|§ E <2T+(a+g)ln%

i=1
Analytical advantages...

> Energy is quadratic with respect to s

» Factorizes over 7;'s
and disadvantages...

» Energy is non-convex w.r.t. (s,~) (posterior is multimodal)

Felix Lucka (felix.lucka@wwu.de)
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Excursus: Full-, Semi-, and Approximate Inversion

Two types of parameters — more possible ways of inference.

Full-MAP:
Full-CM:
v-MAP:

S-MAP:
VB:

Maximize ppost(s,y|b) w.r.t. s and ~.

Integrate ppost(s,~y|b) w.r.t. s and ~.

Integrate ppost(s,<y|b) w.r.t. s, and maximize over =, first.
Then use ppost(s, ¥(b)|b) to infer s. (Hyperparameter
MAP/Empirical Bayes)

Integrate ppost(s,y|b) w.r.t. v, and maximize over s.

Assume approximative factorization
Ppost (S, Y| b) & Ppost (5]b) Ppost(7|b); Approximate both with
distributions that are analytically tractable.

Focus of our work: Fully Bayesian inference.

Felix Lucka (felix.lucka@wwu.de)



Example: Hierarchical Bayesian Modeling of Focal Activity

Full-MAP estimate
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Starting Point for our Studies

> A specific HBM aims to recover source configurations consisting of few,
focal sources (introduced in Sato et al., 2004; further examined in
Nummenmaa et al., 2007; Wipf and Nagarajan, 2009; Calvetti et al., 2009)

> Calvetti et al., 2009 found promising first results for certain inference
strategies for deep-lying sources and the separation of multiple (focal)
sources.

Limitations of Calvetti et al., 2009 :
> Specific results were not convincing; reason unclear.
» No systematic examination; only two source scenarios.

» Head models insufficient.

Felix Lucka (felix.lucka@wwu.de)
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Starting Point for our Studies

> A specific HBM aims to recover source configurations consisting of few,
focal sources (introduced in Sato et al., 2004; further examined in
Nummenmaa et al., 2007; Wipf and Nagarajan, 2009; Calvetti et al., 2009)

> Calvetti et al., 2009 found promising first results for certain inference
strategies for deep-lying sources and the separation of multiple (focal)
sources.

Limitations of Calvetti et al., 2009 :
> Specific results were not convincing; reason unclear.
» No systematic examination; only two source scenarios.

» Head models insufficient.

Why are we interested in that?

(rhetorical question to switch to another talk in an elegant way...)

Felix Lucka (felix.lucka@wwu.de)
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Tasks and Problems for EEG/MEG in Presurgical Epilepsy Diagnosis

EEG/MEG in epileptic focus localization:
> Focal epilepsy is believed to originate from networks of focal sources.

» Active in inter-ictal spikes.

v

Task 1: Determine number of focal sources (multi focal epilepsy?).

Task 2: Determine location and extend of sources.

v

Unknown number and spatial extend of sources?
— Current density reconstruction (CDR).

Problems of established CDR methods:
> Depth-Bias: Reconstruction of deeper sources too close to the surface.

> Masking: Near-surface sources “mask" deep-lying ones.

Felix Lucka (felix.lucka@wwu.de)



Depth Bias: lllustration
One deep-lying reference source (blue cone) and minimum norm estimate (MNE,
Hamaldinen and limoniemi, 1994).




Depth Bias: lllustration

One deep-lying reference source (blue cone) and sSLORETA result
(Pascual-Marqui, 2002).




Masking: lllustration

Reference sources.




Masking: lllustration
MNE result and reference sources (green cones).
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Masking: lllustration
sLORETA result and reference sources (green cones).
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Diploma Thesis and Neuroimage Paper (EEG only!)

Can Full-MAP and Full-CM for HBM overcome the
limitations (depth-bias, masking) of established CDR methods?

Work program:

» Implementation of Full-MAP and Full-CM inference for HBM with realistic,
high resolution Finite Element (FE) head models.

> Propose own algorithms for Full-MAP estimation.

» Introduction of suitable performance measures for validation of simulation
studies.

» Systematic examination of performance concerning depth-bias and masking
in simulation studies.

Felix Lucka (felix.lucka@wwu.de)



Results Depth Bias: Illustration

One deep-lying reference source (blue cone) and Full-CM result.




Results Depth Bias: lllustration

One deep-lying reference source (blue cone) and Full-MAP result proposed by
Calvetti et al., 2009.




Results Depth Bias: Illustration

One deep-lying reference source (blue cone) and Full-MAP result proposed by us.




Results Masking: lllustration
Full-CM result and reference sources (green cones).




Results Masking: lllustration
Full-MAP result (by our algorithm) and reference sources (green cones).
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Systematic Studies: Summary

Study 1 (depth-bias):
> Reconstruction of single 1000 dipoles; random location and orientation.
> Reconstructions were compared using different performance measures.

» Specific examination of depth bias.

Study 2 (masking):
» Reconstruction of 1000 source configurations consisting of one near-surface
and one deep-lying dipole.

» Reconstructions were compared using a performance measure based on
optimal transport (called earth mover’s distance, a Wasserstein metric).

Felix Lucka (felix.lucka@wwu.de)
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Systematic Studies: Summary

Results for Full-MAP and Full-CM estimation:
» Good performance in all validation measures.
> No depth bias.
» Good results w.r.t. orientation, amplitude and spatial extend.

» Full-MAP estimate (by our algorithm): Best results in every aspect
examined.

Full results:

ﬁ Felix Lucka., Sampsa Pursiainen, Martin Burger,Carsten H. Wolters. 2012.
Hierarchical Bayesian Inference for the EEG Inverse Problem using Realistic
FE Head Models: Depth Localization and Source Separation for Focal
Primary Currents.
Neuroimage 61(4), 1364-1382.

Felix Lucka (felix.lucka@wwu.de)
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Conclusions, Diploma Thesis and Neuroimage paper

Can Full-MAP and Full-CM for HBM overcome the
limitations (depth-bias, masking) of established CDR methods?

35

Felix Lucka (felix.lucka@wwu.de)
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Conclusions, Diploma Thesis and Neuroimage paper

Can Ful-MAP and Full-CM for HBM overcome the
limitations (depth-bias, masking) of established CDR methods?

» Hierarchical Bayesian modeling used with realistic head modeling is a
promising framework for EEG CDR.

> Promising results for deep sources (no depth bias).

» Promising results for challenging multiple source scenarios (no masking).

% A promising tool for the analysis of neurophysiological data. %

Felix Lucka (felix.lucka@wwu.de)
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We addressed two questions that were posed in the outlook of the paper:
» EEG vs. MEG and EEG/MEG combination (EMEG):
» Do our findings also apply for MEG?
> Previously (e.g., Molins et al., 2008), the differences between EEG and
MEG have mainly been examined by established inverse methods. How
are things for fully-Bayesian inference for HBM?

» Realistic Head Model: Formerly, we used a simplified head model with a
homogenous inner brain (to facilitate the interpretation of the results).
Especially for EEG/MEG combination, the use of a realistic, individual and
anisotropic head model is mandatory.

36

Felix Lucka (felix.lucka@wwu.de)



Model Setup: Modeling Pipeline
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Model Setup: Sensor Configuration
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Simulation Studies

Inverse Methods:
> Three fully-Bayesian HBM methods:

> Full-MAP estimates
» Full-CM estimates
> Full-NM (Near-Mean) estimates

» Minimum norm estimates (MNE) with different weightings (WMNE).
» sLORETA

Simulation studies (similar to Neuroimage paper):
1. Single dipole recovery — localization, focality, depth-bias.
2. Two dipole recovery — source separation.

Source configurations were reconstructed using
(a) EEG alone (b) MEG alone (c) EMEG data

39

Felix Lucka (felix.lucka@wwu.de)



Exemplary Three Dipole Scenarios 1: HBM-NM Estimate, EEG alone




Exemplary Three Dipole Scenarios 1: HBM-NM Estimate, MEG alone




Exemplary Three Dipole Scenarios 1: HBM-NM Estimate, EMEG




Exemplary Three Dipole Scenarios 2: HBM-NM Estimate, EEG alone




Exemplary Three Dipole Scenarios 2: HBM-NM Estimate, MEG alone




Exemplary Three Dipole Scenarios 2: HBM-NM Estimate, EMEG




Exemplary Three Dipole Scenarios 3: HBM-NM Estimate, EEG alone




Exemplary Three Dipole Scenarios 3: HBM-NM Estimate, MEG alone




Exemplary Three Dipole Scenarios 3: HBM-NM Estimate, EMEG
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Biomag Results and Conclusions, EEG vs. MEG

Results:

» HBM methods and sSLORETA do not show a depth bias in any modality.

> Weighting of MNE to avoid depth bias in all modalities is difficult and
comes at the cost of other draw-backs.

» The average localization performance (mean DLE) of HBM methods is
equal for EEG and MEG. For WMNE variants and sSLORETA, it is better
for MEG.

» The mean EMD (localization + spatial extend) is better for EEG than

MEG for all methods, although the differences are differently pronounced.

49

Felix Lucka (felix.lucka@wwu.de)
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Biomag Results and Conclusions, EEG vs. MEG

Results:

» HBM methods and sSLORETA do not show a depth bias in any modality.

> Weighting of MNE to avoid depth bias in all modalities is difficult and
comes at the cost of other draw-backs.

» The average localization performance (mean DLE) of HBM methods is
equal for EEG and MEG. For WMNE variants and sSLORETA, it is better
for MEG.

» The mean EMD (localization + spatial extend) is better for EEG than
MEG for all methods, although the differences are differently pronounced.

Conclusions:

» Statements about localization properties of single modalities cannot be
made without a reference to the inverse method used. This is a feature of
the ill-posed nature of the EEG/MEG inverse problem.

» For all MNE variants and sLORETA, MEG offers a better localization
(DLE) of single dipoles while having a higher EMD = better localization
comes at the costs of a larger blurring.

49

Felix Lucka (felix.lucka@wwu.de)
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Biomag Results and Conclusions, EEG/MEG Combination

Results:

» The combination improves the average performance of all methods
(measured in EMD and DLE).

» The improvement of the EMD of HBM methods for multiple source
scenarios is larger than for established methods.

» The combination reduces variance and outliers in the error statistics.

» The depth localization does not always profit from combination, especially
if a single modality is very weak in that aspect.

Felix Lucka (felix.lucka@wwu.de)
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Biomag Results and Conclusions, EEG/MEG Combination

Results:

» The combination improves the average performance of all methods
(measured in EMD and DLE).

» The improvement of the EMD of HBM methods for multiple source
scenarios is larger than for established methods.

» The combination reduces variance and outliers in the error statistics.

» The depth localization does not always profit from combination, especially
if a single modality is very weak in that aspect.

Conclusions:

» EEG/MEG combination stabilizes and improves source reconstruction to a
considerable amount.

» Fully-Bayesian HBM methods profit from EEG/MEG combination especially
for source separation in multiple source scenarios. This further underlines
the potential of these methods for complex sources scenarios in real
applications.
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Outlook & Future Work

» Current focus: Processing of real data:
» combined AEP/AEF and SEF/SEP data;
> interictal epileptic activity;
» Practical aspects of EEG/MEG combination: Noise rescaling, volume
conductor calibration and sensor weighting.
» Temporal extension of our HBM methods.
» Generalization of the specific HBM
> to also recover more extented source scenarios;
> to model inhibintion, excitation and syncrony between brain areas;
> to incorporate mulitmodal information from, e.g., DW-MRI, PET,
SPECT, fMRI, NIRS;
» Comparison of HBM methods and EEG and MEG for extended source
configurations.
» Comparison to other HBM-based methods like variational Bayesian
approaches.
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Thank you
for your
attention!

Software used by our group:

v

Registration: FSL,FAIR;
Segmentation: FSL, CURRY;

FEM Meshing: Tetgen, vgrid,
iso2mesh:

» FEM Computation: SimBio;

v

v

vV Vv VvV Vv

Data Preprocessing: CURRY, BESA;

Inverse computation: Matlab;

Volume Visualization: SCIRun;

Everything else & software integration:
Matlab;
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