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Introduction and Overview



Computational Imaging @ CWI
= |

e headed by Joost Batenburg, 18 members

e mathematics, computer science & (medical) physics

e advanced computational techniques for 3D imaging

e (inter-)national collaborations from science, industry & medicine

e one of the two main developers of the ASTRA Toolbox

e FleX-ray Lab: custom-made, fully-automated X-ray CT scanner
linked to large-scale computing hardware
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X-ray Computed Tomography (CT)

e X-rays (high-energy photons) get attenuated by matter

e 3D attenuation image computed from different 2D projections
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X-ray Computed Tomography (CT)

(a) Modern CT scanner (b) CT scan of a patient’s lung

Source: Wikimedia Commons
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Imaging Across Disciplines

Observational astronomy

Life and material science
microscopy

Medical imaging

CT, MRI, PET, SPECT, US...
Geophysical imaging
(electrical) resistivity, seismic

(ground-penetrating) radar, ...

Remote sensing
earth science, military & intelligence

Industrial process imaging

Source: Wikimedia Commons
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Mathematical Imaging: Reconstruct spatially distributed of quantities
of interest from indirect observations through algorithms derived from
rigorous mathematics.



Imaging: An Inverse Problem

Inverse problem: Given data f recover unknowns u (image) from

f=AU)+e¢

e Forward operator A solution of PDE modelling underlying physics.
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Inverse problem: Given data f recover unknowns u (image) from

f=AU)+¢

e Forward operator A solution of PDE modelling underlying physics.

o Typical inverse problems are ill-posed.
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Imaging: An Inverse Problem

u A(u)

Inverse problem: Given data f recover unknowns u (image) from

e Forward operator A solution of PDE modelling underlying physics.
e Typical inverse problems are ill-posed.

e Stable solution requires a-priori information on u.
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Inverse Problems / Imaging Workflow

mathematical modeling
physics, PDEs, approximations

theoretical analysis
uniqueness, recovery conditions,
stability

reconstruction/inference approach
regularization, statistical inference,
machine learning

reconstruction algorithm
numerical linear algebra, PDEs,
optimization, MCMC

large-scale computing
parallel computing, GPU computing
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Current Challenges in Computational Imaging

core development for new modalities: N

/(/’

hybrid imaging .\.§
/””m ﬁi\‘\t\\

more from more:
multi-spectral, multi-modal, high resolution

same from less:
low-dose, limited-view, compressed, dynamic

break the routine:
real-time, dose adaptation, zooming

Hidden

uncertainty quantification & quantitative imaging Input

machine learning:
embedding, networks for 3D /4D, clinical training data



\ CWL_

X-ray Computed Tomography




Mathematics of X-ray Computed Tomography (CT)

Beer-Lambert’s law: Intensity of monochromatic ray passing through
heterogeneous medium described by log (/1/lp) = — [, u(

— integral geometry problem, A reduces to Radon transform:

f(o,t) = /L(e ) u(x)dx, L(0,t) ={x € R|x;cos(f) + xzsin(f) = t}

u Au
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Image Reconstruction Approaches

f=Au+e¢

Analytical - determine AL regularize it, discretize it

0=A"Hf (filtered backprojection — FBP)

v efficient to implement and execute
I' lack of flexibility for unconventional scanning set-ups
I' severe artifacts for limited / sparse projection data

I hard to introduce a-priori knowledge
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Image Reconstruction Approaches

Analytical - determine A~!, regularize it, discretize it

Algebraic / variational - discretize and optimize via iterative scheme

0y = argmin {% |Au — f||§ + Aj(u)}
ueU

I' higher computational cost
v highly flexible, arbitrary geometries
v less artifacts for limited / sparse projection data

v~ introduction of a-priori knowledge possible
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Image Reconstruction Approaches

f=Au+e¢

Analytical - determine A~!, regularize it, discretize it
Algebraic / variational - discretize and optimize via iterative scheme
Bayesian / statistical - explicit uncertainty modeling

plike(flu)pprior(u)

pPOSt(u|f) = p(f)

I'1 even higher computational cost

v~ rigorous assessment of solution’s uncertainties
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Image Reconstruction Approaches

f=Au+e

Analytical - determine A~!, regularize it, discretize it
Algebraic / variational - discretize and optimize via iterative scheme
Bayesian / statistical - explicit uncertainty modeling
Deep learning - improve everything by trained DNNs
v/ extremely promising
v can be fast

I not well understood (yet)

I training data
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lllustration of Different Reconstruction Methods

(a) true image

(d) SIRT (e) TV regularization



ASTRA Toolbox

e open source software, developed by CWI and Univ. Antwerp

e provides scalable, high-performance GPU primitives for tomography
e flexible with respect to projection geometry

o featured in the NVIDIA CLARA Platform

-\

Low-level C/C++ interface
control

——\
Scalability GPU/CUDA
-\

www.astra-toolbox.com


www.astra-toolbox.com

Deep Learning with Convolutional Neuronal Networks

Approximate function v = G(u) by neuronal network Gy:

e Gy: composition of many computational units (layers)
o layers: y = o (Wx + b)
e W is convolution: convolutional neuronal network (CNN)

e O: all free parameters

learning: from training set {(u;, v;)}/;

0 = argmin {Em: Loss (Gy(u;), vi) + )\J(G)}

0co

(stochastic) gradients via backpropagation & automatic
differentiation
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DNN for Removal of FBP Artefacts

Left: 1024 projections, middle/right: 128 projections

@ Pelt, Batenburg, Sethian, 2018. Improving Tomographic Reconstruction
from Limited Data Using Mixed-Scale Dense Convolutional Neural
Networks, Journal of Imaging 4 (11), 128.

@ Pelt, Sethian, 2018. Mixed-scale dense network for image analysis, PNAS
115 (2) 254-259.
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Photoacoustic and Ultrasound
Tomography




Photoacoustic Imaging: Physical Principles

Optical Part Acoustic Part

optical absorption coefficient: p,
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Photoacoustic Tomography: Physical Principles

Optical Part

optical absorption coefficient: p,
pulsed laser excitation: ¢

thermalization by chromophores: H = (1, ®

Q, ¢ = const.

Acoustic Part
local pressure increase: pp =I'H
elastic wave propagation: p(x, t)

measurement of pressure time courses:

fi(t) = p(yi, t)

Photoacoustic effect

e coupling of optical and acoustic
modalities.

e "hybrid imaging”

e high optical contrast sensed by
high-resolution ultrasound.



Photoacoustic Tomography: Mathematical Formulation

(stationary) radiative transport equation (RTE)

(s V 4 1a(x) + 12(x)) B, 5) = q(x, 5) + pa() / O(s. s')b(x, '),

coupled with acoustic wave equation

p(x,t =0) = pg:=T(x)pa(x) / @(x, s)ds, Op(x,t=0)=0

(C(X)_zaf — A)p(x,t) =0, f = Splmx[o,7]

Hybrid inverse problem:

v/ acoustic initial value problem with boundary data

v optical parameter identification problem with internal data
vs. diffuse optical tomography (DOT):

I optical parameter identification problem with boundary data



Photoacoustic Tomography: Applications

0.0001 +
400 600 800 1000 1200 1400 1600 1800

wavelength (nm)

High contrast for light-absorbing structures in soft tissue.

Gap between oxygenated and deoxygenated blood.

e Different wavelengths allow quantitative spectroscopic
examinations.

Use of contrast agents for molecular imaging.

Extremely promising future imaging technique!
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H2020 Project: Photoacoustic Mammography Scanner
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e Real-time photoacoustic imaging

e Multi-modal: joint ultrasound CT (USCT) and PA imaging
e Multi-spectal: quantitative sO, imaging



H2020 Project: Photoacoustic Mammography Scanner

PHOTOACOQUSTIC IMAGING

photoacoustic excitation photoacoustic detection
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3D Wave Propagation Methods for PAT and USCT

k-space pseudospectral time domain method:

B. Treeby and B. Cox, 2010. k-Wave:

MATLAB toolbox for the simulation and @ «D!

reconstruction of photoacoustic wave fields, *
NVIDIA.

Journal of Biomedical Optics.

derivation and discretization of adjoint PAT operator A*:

El Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator
in Photoacoustic Tomography, Inverse Problems 32(11).

approximation via deep learning;:

B Hauptmann, Cox, L, Huynh, Betcke, Beard, Arridge, 2018.
Approximate k-space models and Deep Learning for fast
photoacoustic reconstruction, MLMIR 2018.



Radiative Transport Equation in 3D

(s-V + pa+ ps) d(x,8) = q+ps / O(s,s')p(x,s')ds’,  &(x) = /qb(x, s)ds

I (x,s) € R® ~ direct FEM infeasible.

Diffusion approximation:

1
3(/“'3 + /Ls(l - g))

Schweiger, Arridge, 2014. The Toast++ software suite for forward and

(pa — V- 6(x)V) ®(x) = /q(x, s)ds, k=
inverse modeling in optical tomography, Journal of Biomedical Optics.

Alternative: GPU-based Monte Carlo estimate of transport density
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Compressed Sensing and
Dynamic Imaging




Sparsity & Compressed Sensing

(a) 100% (b) 10% (c) 1%

e sparsity traditionally used for compression of Nyquist data.
e Nyquist sampling: too much time/radiation!

e directly sense non-redundant information? — compressed sensing
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Accelerated Imaging via Compressed Sensing

Beat Nyquist for objects with low spatio-temporal
complexity by incoherent sub-sampling,

f¢=Cf = C(Au+e)

combined with sparsity-constrained variational image
reconstruction:

iy = argmin {% ||CAu — f||§ + Aj(u)}
uel

I Development of novel acquisition systems.
I' Iterative, first-order methods for non-smooth optimization.

I Matrix-free implementation of A, A*.



Accelerated 3D PAT via Compressed Sensing

Fabry Pérot sehsor

7 = ]
s |

" development of compressed sensing PAT scanners
~ implementation of sparse regularization schemes

v

v

v/ realistic simulated, experimental and in-vivo data
v significant acceleration with minor loss of quality
v

* further improvement through deep learning

@ Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang, 2016. Accelerated
High-Resolution Photoacoustic Tomography via Compressed Sensing, PMB.
@ Hauptmann, L, Betcke, Huynh, Adler, Cox, Beard, Ourselin, Arridge, 2018.

Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic
Tomography, IEEE-TMI.



Spatio-Temporal Reconstruction: 4D PAT

Dynamic compressed sensing:
ftc = tht = Ct(AUt + Et)

Limitations of frame-by-frame —

full data 16x acc. (6.25%)



Spatio-Temporal Reconstruction: 4D PAT

Dynamic compressed sensing:
e = Cefy = Gi(Aut + <)

Limitations of frame-by-frame —

0,
Spatio-temporal image reconstruction: full data 16x acc. (6.25%)

Parametric models (shift, stretch, etc.): simple and nice if applicable.
Non-parametric models, e.g., spatio-temporal variational schemes:
"1
{i = argmin Z ZICA e — £E|[5 + AR (u)
ueU 2
t
e space-time decomposition (structured low-rank)

e more sophisticated: joint reconstruction of image and dynamics.



Spatio-Temporal Reconstruction: 4D PAT

Dynamic compressed sensing:
e = Cefy = Gi(Aut + <)

Limitations of frame-by-frame —

full data 16x acc. (6.25%)

-
1
(0, 0) = argmin { Z 5 |C:A uy — ftcug+aj(ut)+ﬂ7-[(vt)+78(u, v)}

uelU,vey t
S(u, v) enforces PDE model of dynamics, e.g., optical flow equation:

Oru(x, t) + (Vxu(x, t)) v(x,t) =0

@ Burger, Dirks, Schonlieb, 2018. A Variational Model for Joint Motion

Estimation and Image Reconstruction, .



Dynamic Compressed Sensing with Optical Flow Constraints

X maxIP

full data, TV-fbf 16x, TV-fbf 16x, TVTVL2

v Proof-of-concept for 4D CS PAT data.

I' High dimensional, non-smooth, bi-convex optimization problem.

@ L, Huynh, Betcke, Zhang, Beard, Cox, Arridge, 2018. Enhancing Compressed
Sensing 4D Photoacoustic Tomography by Simultaneous Motion Estimation,

SIAM Journal on Imaging Sciences 11:4, 2224-2253.



Dynamic Compressed Sensing with Deep Learning

@ Hauptmann, Arridge, L, Muthurangu, Steeden, 2018. Realtime
cardiovascular MR with spatiotemporal artifact suppression using deep
learning - proof of concept in congenital heart disease, Magnetic

Resonance in Medicine.
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Summary




e imaging has broad range of applications

e mathematically: inverse problem of reconstructing distributed
quantities from indirect observations

e stable solution requires a-priori information

e mathematical modeling, (solving) PDEs, numerical optimization
e 3D: high performance computing

e compressed sensing and dynamic/spectral imaging

e hot topic: deep learning
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e imaging has broad range of applications

e mathematically: inverse problem of reconstructing distributed
quantities from indirect observations

e stable solution requires a-priori information

e mathematical modeling, (solving) PDEs, numerical optimization
e 3D: high performance computing

e compressed sensing and dynamic/spectral imaging

e hot topic: deep learning

Thank you for your attention!
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@ Arridge, Betcke, Cox, L, Treeby, 2016. On the Adjoint Operator in Photoacoustic

Tomography, Inverse Problems 32(11).

@ Arridge, Beard, Betcke, Cox, Huynh, L, Ogunlade, Zhang, 2016. Accelerated

High-Resolution Photoacoustic Tomography via Compressed Sensing, PMB 61(24).

Hauptmann, L, Betcke, Huynh, Adler, Cox, Beard, Ourselin, Arridge, 2018. Model-Based
Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography, IEEE-TMI 37(6).

L, Huynh, Betcke, Zhang, Beard, Cox, Arridge, 2018. Enhancing Compressed Sensing 4D

Photoacoustic Tomography by Simultaneous Motion Estimation, SIAM-IS 11(4).

) & @

Hauptmann, Arridge, L, Muthurangu, Steeden, 2018. Realtime cardiovascular MR with
spatiotemporal artifact suppression using deep learning - proof of concept in congenital heart

disease, Magnetic Resonance in Medicine.
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